{"title":"具有相同偶数环的符号图","authors":"Bertrand Guenin, Cheolwon Heo, Irene Pivotto","doi":"10.1007/s00493-025-00160-4","DOIUrl":null,"url":null,"abstract":"<p>Whitney proved that if two 3-connected graphs <i>G</i> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>G</mi><mo>&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -821.4 1081.3 909.7\" width=\"2.511ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-2032\" y=\"513\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\"math/tex\">G'</script></span> have the same set of cycles (or equivalently, the same set of cuts) then <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi><mo>=</mo><msup><mi>G</mi><mo>&#x2032;</mo></msup></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -821.4 3201.9 909.7\" width=\"7.437ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use x=\"1064\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(2120,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMAIN-2032\" y=\"513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>G</mi><mo>=</mo><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\"math/tex\">G=G'</script></span>. We characterize when two 4-connected signed graphs have the same set of even cycles, and we characterize when two 4-connected grafts have the same set of even cuts.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signed graphs with the same even cycles\",\"authors\":\"Bertrand Guenin, Cheolwon Heo, Irene Pivotto\",\"doi\":\"10.1007/s00493-025-00160-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Whitney proved that if two 3-connected graphs <i>G</i> and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>G</mi><mo>&#x2032;</mo></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -821.4 1081.3 909.7\\\" width=\\\"2.511ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMAIN-2032\\\" y=\\\"513\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\\\"math/tex\\\">G'</script></span> have the same set of cycles (or equivalently, the same set of cuts) then <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi><mo>=</mo><msup><mi>G</mi><mo>&#x2032;</mo></msup></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -821.4 3201.9 909.7\\\" width=\\\"7.437ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use x=\\\"1064\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2120,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMAIN-2032\\\" y=\\\"513\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>G</mi><mo>=</mo><msup><mi>G</mi><mo>′</mo></msup></math></span></span><script type=\\\"math/tex\\\">G=G'</script></span>. We characterize when two 4-connected signed graphs have the same set of even cycles, and we characterize when two 4-connected grafts have the same set of even cuts.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00160-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00160-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Whitney proved that if two 3-connected graphs G and have the same set of cycles (or equivalently, the same set of cuts) then . We characterize when two 4-connected signed graphs have the same set of even cycles, and we characterize when two 4-connected grafts have the same set of even cuts.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.