部分团队交换下Kirkman调度图的初始迁移

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yusuke Kashiwagi, Masaki Yamamoto, Takamasa Yashima
{"title":"部分团队交换下Kirkman调度图的初始迁移","authors":"Yusuke Kashiwagi, Masaki Yamamoto, Takamasa Yashima","doi":"10.1007/s10878-025-01329-9","DOIUrl":null,"url":null,"abstract":"<p>Kirkman schedule is one of the typical single round-robin (abbrev. SRR) tournaments. The partial team swap (abbrev. PTS) is one of the typical procedures of changing from an SRR tournament to another SRR tournament, which is used in local search for solving the traveling tournament problem. An SRR of <i>n</i> teams (of even number) can be represented by a 1-factorization of the complete graph <span><span style=\"\">K_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1374.1 952.8\" width=\"3.192ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1201\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">K_n</script></span>. It is known that the 1-factorization of any Kirkman schedule is “perfect” when <span><span style=\"\">n=p+1</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -733.9 4161.5 994.3\" width=\"9.665ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMATHI-70\" y=\"0\"></use><use x=\"2660\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"3661\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n=p+1</script></span> for prime numbers <i>p</i>, meaning that any pair of 1-factors in the 1-factorization forms a Hamilton cycle <span><span style=\"\">C_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1240.1 995.9\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> in <span><span style=\"\">K_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 1374.1 952.8\" width=\"3.192ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1201\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">K_n</script></span>, called a 2-edge-colored Hamilton cycle. We are concerned with the cycle structure after applying the PTS to Kirkman schedules, that is, how a 2-edge-colored Hamilton cycle <span><span style=\"\">C_n</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1240.1 995.9\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> is decomposed into two 2-edge-colored cycles of length 2<i>d</i> and <span><span style=\"\">n-2d</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 2847.4 909.7\" width=\"6.613ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"2323\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n-2d</script></span>, say, <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1539.6 995.9\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> and <span><span style=\"\">C_{n-2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 2514.7 1039.1\" width=\"5.841ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1379\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1879\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n-2d}</script></span> for some number <span><span style=\"\">d\\in [n/2]</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3905.1 1125.3\" width=\"9.07ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><use x=\"1746\" xlink:href=\"#MJMAIN-5B\" y=\"0\"></use><use x=\"2025\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2625\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"3126\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"3626\" xlink:href=\"#MJMAIN-5D\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d\\in [n/2]</script></span>. We characterize the numbers <i>d</i> such that any cycle <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1539.6 994.3\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> is not generated by <i>any</i> PTS. Moreover, in case that a cycle <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1539.6 994.3\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> is generated, we show that the number of <span><span style=\"\">C_{2d}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1539.6 995.9\" width=\"3.576ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-150)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{2d}</script></span> for any <span><span style=\"\">d\\ne n/4</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3459.1 1125.3\" width=\"8.034ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-2260\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2458\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"2958\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d\\ne n/4</script></span> generated by any PTS is at most <span><span style=\"\">n-2</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -735.2 2323.9 866.5\" width=\"5.398ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"822\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n-2</script></span>. For the case of <span><span style=\"\">d=n/4</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3459.1 1125.3\" width=\"8.034ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-64\" y=\"0\"></use><use x=\"801\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1857\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"2458\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"2958\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">d=n/4</script></span> (i.e., <span><span style=\"\">C_{n/2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.814ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -778.3 1947.9 1211.6\" width=\"4.524ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-187)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n/2}</script></span>), the number of <span><span style=\"\">C_{n/2}</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.809ex\" role=\"img\" style=\"vertical-align: -1.005ex;\" viewbox=\"0 -777 1947.9 1209.6\" width=\"4.524ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><g transform=\"translate(715,-187)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">C_{n/2}</script></span> generated by any PTS is at most <span><span style=\"\">2(n-2)</span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 3603.4 1123.4\" width=\"8.369ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"890\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1712\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2713\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"3213\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">2(n-2)</script></span>, and there is some PTS to achieve the upper bound.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"43 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the initial transition of graphs of Kirkman schedules by the partial team swap\",\"authors\":\"Yusuke Kashiwagi, Masaki Yamamoto, Takamasa Yashima\",\"doi\":\"10.1007/s10878-025-01329-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kirkman schedule is one of the typical single round-robin (abbrev. SRR) tournaments. The partial team swap (abbrev. PTS) is one of the typical procedures of changing from an SRR tournament to another SRR tournament, which is used in local search for solving the traveling tournament problem. An SRR of <i>n</i> teams (of even number) can be represented by a 1-factorization of the complete graph <span><span style=\\\"\\\">K_n</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 1374.1 952.8\\\" width=\\\"3.192ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1201\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">K_n</script></span>. It is known that the 1-factorization of any Kirkman schedule is “perfect” when <span><span style=\\\"\\\">n=p+1</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -733.9 4161.5 994.3\\\" width=\\\"9.665ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"878\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1934\\\" xlink:href=\\\"#MJMATHI-70\\\" y=\\\"0\\\"></use><use x=\\\"2660\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"3661\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n=p+1</script></span> for prime numbers <i>p</i>, meaning that any pair of 1-factors in the 1-factorization forms a Hamilton cycle <span><span style=\\\"\\\">C_n</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1240.1 995.9\\\" width=\\\"2.88ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1011\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">C_n</script></span> in <span><span style=\\\"\\\">K_n</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 1374.1 952.8\\\" width=\\\"3.192ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1201\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">K_n</script></span>, called a 2-edge-colored Hamilton cycle. We are concerned with the cycle structure after applying the PTS to Kirkman schedules, that is, how a 2-edge-colored Hamilton cycle <span><span style=\\\"\\\">C_n</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1240.1 995.9\\\" width=\\\"2.88ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1011\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"-213\\\"></use></g></svg></span><script type=\\\"math/tex\\\">C_n</script></span> is decomposed into two 2-edge-colored cycles of length 2<i>d</i> and <span><span style=\\\"\\\">n-2d</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -778.3 2847.4 909.7\\\" width=\\\"6.613ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"822\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"2323\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n-2d</script></span>, say, <span><span style=\\\"\\\">C_{2d}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1539.6 995.9\\\" width=\\\"3.576ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{2d}</script></span> and <span><span style=\\\"\\\">C_{n-2d}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 2514.7 1039.1\\\" width=\\\"5.841ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1379\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1879\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{n-2d}</script></span> for some number <span><span style=\\\"\\\">d\\\\in [n/2]</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 3905.1 1125.3\\\" width=\\\"9.07ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><use x=\\\"1746\\\" xlink:href=\\\"#MJMAIN-5B\\\" y=\\\"0\\\"></use><use x=\\\"2025\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"2625\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"3126\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"3626\\\" xlink:href=\\\"#MJMAIN-5D\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">d\\\\in [n/2]</script></span>. We characterize the numbers <i>d</i> such that any cycle <span><span style=\\\"\\\">C_{2d}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 1539.6 994.3\\\" width=\\\"3.576ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{2d}</script></span> is not generated by <i>any</i> PTS. Moreover, in case that a cycle <span><span style=\\\"\\\">C_{2d}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 1539.6 994.3\\\" width=\\\"3.576ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{2d}</script></span> is generated, we show that the number of <span><span style=\\\"\\\">C_{2d}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1539.6 995.9\\\" width=\\\"3.576ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-150)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{2d}</script></span> for any <span><span style=\\\"\\\">d\\\\ne n/4</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 3459.1 1125.3\\\" width=\\\"8.034ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-2260\\\" y=\\\"0\\\"></use><use x=\\\"1857\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"2458\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"2958\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">d\\\\ne n/4</script></span> generated by any PTS is at most <span><span style=\\\"\\\">n-2</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -735.2 2323.9 866.5\\\" width=\\\"5.398ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"822\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n-2</script></span>. For the case of <span><span style=\\\"\\\">d=n/4</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 3459.1 1125.3\\\" width=\\\"8.034ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-64\\\" y=\\\"0\\\"></use><use x=\\\"801\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1857\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"2458\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"2958\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">d=n/4</script></span> (i.e., <span><span style=\\\"\\\">C_{n/2}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.814ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -778.3 1947.9 1211.6\\\" width=\\\"4.524ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-187)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1101\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{n/2}</script></span>), the number of <span><span style=\\\"\\\">C_{n/2}</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.809ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.005ex;\\\" viewbox=\\\"0 -777 1947.9 1209.6\\\" width=\\\"4.524ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use><g transform=\\\"translate(715,-187)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1101\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></g></svg></span><script type=\\\"math/tex\\\">C_{n/2}</script></span> generated by any PTS is at most <span><span style=\\\"\\\">2(n-2)</span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 3603.4 1123.4\\\" width=\\\"8.369ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"890\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"1712\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"2713\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"3213\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">2(n-2)</script></span>, and there is some PTS to achieve the upper bound.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01329-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01329-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

柯克曼赛程是一种典型的单轮循环赛(简称。SRR)比赛。部分团队交换(简称。PTS)是从一个SRR赛事转换到另一个SRR赛事的典型过程之一,用于解决巡回赛问题的本地搜索。n个团队(偶数)的SRR可以用完全图K_nK_n的1分解来表示。已知对于素数p,当n=p+1n=p+1时,任何柯克曼调度的1因子分解是“完美的”,这意味着1因子分解中的任何一对1因子在K_nK_n中形成一个汉密尔顿环C_nC_n,称为2边彩色汉密尔顿环。我们关注的是将PTS应用于Kirkman调度后的环结构,即如何将一个2边彩色Hamilton环C_nC_n分解为两个长度为2d和n-2dn-2d的2边彩色环,即对于某数d\in [n/2]d\in [n/2] C_{2d}C_{n-2d}和C_{n-2d}C_{n-2d}。我们对数字d进行表征,使得任何循环C_{2d}C_{2d}不是由任何PTS生成的。此外,在生成一个循环C_{2d}C_{2d}的情况下,我们证明了对于任意PTS生成的任意d\ne n/4d\ne n/4, C_{2d}C_{2d}的个数最多为n-2n-2。对于d=n/4d=n/4的情况(即C_{n/2}C_{n/2}),任意PTS生成的C_{n/2}C_{n/2}个数最多为2(n-2)2(n-2),且有一些PTS达到上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the initial transition of graphs of Kirkman schedules by the partial team swap

Kirkman schedule is one of the typical single round-robin (abbrev. SRR) tournaments. The partial team swap (abbrev. PTS) is one of the typical procedures of changing from an SRR tournament to another SRR tournament, which is used in local search for solving the traveling tournament problem. An SRR of n teams (of even number) can be represented by a 1-factorization of the complete graph K_n. It is known that the 1-factorization of any Kirkman schedule is “perfect” when n=p+1 for prime numbers p, meaning that any pair of 1-factors in the 1-factorization forms a Hamilton cycle C_n in K_n, called a 2-edge-colored Hamilton cycle. We are concerned with the cycle structure after applying the PTS to Kirkman schedules, that is, how a 2-edge-colored Hamilton cycle C_n is decomposed into two 2-edge-colored cycles of length 2d and n-2d, say, C_{2d} and C_{n-2d} for some number d\in [n/2]. We characterize the numbers d such that any cycle C_{2d} is not generated by any PTS. Moreover, in case that a cycle C_{2d} is generated, we show that the number of C_{2d} for any d\ne n/4 generated by any PTS is at most n-2. For the case of d=n/4 (i.e., C_{n/2}), the number of C_{n/2} generated by any PTS is at most 2(n-2), and there is some PTS to achieve the upper bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信