求助PDF
{"title":"具有二次惩罚平方和的二价二次优化","authors":"Tongli Zhang, Yong Xia","doi":"10.1007/s10878-025-01339-7","DOIUrl":null,"url":null,"abstract":"<p>The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with <i>K</i> quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>&#x03F5;</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 406.5 607.8\" width=\"0.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ϵ</mi></math></span></span><script type=\"math/tex\">\\epsilon </script></span> via solving at most <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>&#x03F5;</mi><msup><mo stretchy=\"false\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 6609.2 1254.7\" width=\"15.35ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"763\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1153\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"1542\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><g transform=\"translate(2432,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"849\" xlink:href=\"#MJMAIN-33\" y=\"513\"></use></g><use x=\"3486\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"3986\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"></use><g transform=\"translate(4393,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"889\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1389\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></g><use x=\"6219\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>O</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>ϵ</mi><msup><mo stretchy=\"false\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">O((Kn^3/\\epsilon )^{K/2})</script></span> linear SDP subproblems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"142 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bivalent quadratic optimization with sum-of-square of quadratic penalties\",\"authors\":\"Tongli Zhang, Yong Xia\",\"doi\":\"10.1007/s10878-025-01339-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with <i>K</i> quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>&#x03F5;</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.412ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -519.5 406.5 607.8\\\" width=\\\"0.944ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>ϵ</mi></math></span></span><script type=\\\"math/tex\\\">\\\\epsilon </script></span> via solving at most <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>&#x03F5;</mi><msup><mo stretchy=\\\"false\\\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.914ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -950.8 6609.2 1254.7\\\" width=\\\"15.35ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4F\\\" y=\\\"0\\\"></use><use x=\\\"763\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1153\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"1542\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2432,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"849\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"513\\\"></use></g><use x=\\\"3486\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"3986\\\" xlink:href=\\\"#MJMATHI-3F5\\\" y=\\\"0\\\"></use><g transform=\\\"translate(4393,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-4B\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"889\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1389\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></g><use x=\\\"6219\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>O</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>ϵ</mi><msup><mo stretchy=\\\"false\\\">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">O((Kn^3/\\\\epsilon )^{K/2})</script></span> linear SDP subproblems.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01339-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01339-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
引用
批量引用