求助PDF
{"title":"平面图形的半强边着色","authors":"Yuquan Lin, Wensong Lin","doi":"10.1007/s10878-025-01346-8","DOIUrl":null,"url":null,"abstract":"<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\"math/tex\">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 1908.5 1037.3\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use><use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\"math/tex\">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 1908.5 1039.1\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use><use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\"math/tex\">G_M,</script></span> then <i>M</i> is a <i>semistrong matching</i> of <i>G</i>; if all the vertices of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\"math/tex\">G_M</script></span> are pendant, then <i>M</i> is an <i>induced matching</i> of <i>G</i>. Strengthened notions of edge coloring and of the chromatic index follow. </p><p>In this paper, we consider the maximum semistrong chromatic index of planar graphs with given maximum degree <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">&#x0394;</mi><mo>.</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 1112 865.1\" width=\"2.583ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mo>.</mo></math></span></span><script type=\"math/tex\">\\Delta .</script></span> We prove that graphs with maximum average degree less than 14/5 have semistrong chromatic index (hence uniquely restricted chromatic index) at most <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">&#x0394;</mi><mo>+</mo><mn>4</mn><mo>,</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3335.9 1039.1\" width=\"7.748ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use><use x=\"3057\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>4</mn><mo>,</mo></math></span></span><script type=\"math/tex\">2\\Delta +4,</script></span> and we reduce the bound to <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">&#x0394;</mi><mo>+</mo><mn>2</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 3057.4 909.7\" width=\"7.101ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>2</mn></math></span></span><script type=\"math/tex\">2\\Delta +2</script></span> if the maximum average degree is less than 8/3. These cases cover, in particular, the cases of planar graphs with girth at least 7 (resp. at least 8). </p><p>Our result makes some progress on the conjecture of Lužar et al. (J Graph Theory 105:612–632, 2024), which asserts that every planar graph <i>G</i> has a semistrong edge coloring with <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">&#x0394;</mi><mo>+</mo><mi>C</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.109ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -777 3317.4 908.2\" width=\"7.705ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mi>C</mi></math></span></span><script type=\"math/tex\">2\\Delta +C</script></span> colors, for some universal constant <i>C</i>. (Note that such a conjecture would fail for strong edge coloring as there exist graphs with arbitrarily large maximum degree that are not strongly <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>4</mn><mi mathvariant=\"normal\">&#x0394;</mi><mo>&#x2212;</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 3836.4 1123.4\" width=\"8.91ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use><use x=\"890\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1945\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2946\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"3446\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>4</mn><mi mathvariant=\"normal\">Δ</mi><mo>−</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(4\\Delta -5)</script></span>-edge-colorable.) We provide an example of a planar graph showing that the maximum semistrong chromatic index of planar graphs with maximum degree <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">&#x0394;</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 833.5 866.5\" width=\"1.936ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi></math></span></span><script type=\"math/tex\">\\Delta </script></span> is at least <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">&#x0394;</mi><mo>+</mo><mn>4.</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 3335.9 909.7\" width=\"7.748ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(2556,0)\"><use xlink:href=\"#MJMAIN-34\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>4.</mn></math></span></span><script type=\"math/tex\">2\\Delta +4.</script></span></p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"135 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semistrong edge colorings of planar graphs\",\"authors\":\"Yuquan Lin, Wensong Lin\",\"doi\":\"10.1007/s10878-025-01346-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1630 995.9\\\" width=\\\"3.786ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\\\"math/tex\\\">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -777 1908.5 1037.3\\\" width=\\\"4.433ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use><use x=\\\"1630\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 1908.5 1039.1\\\" width=\\\"4.433ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use><use x=\\\"1630\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">G_M,</script></span> then <i>M</i> is a <i>semistrong matching</i> of <i>G</i>; if all the vertices of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1630 995.9\\\" width=\\\"3.786ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\\\"math/tex\\\">G_M</script></span> are pendant, then <i>M</i> is an <i>induced matching</i> of <i>G</i>. Strengthened notions of edge coloring and of the chromatic index follow. </p><p>In this paper, we consider the maximum semistrong chromatic index of planar graphs with given maximum degree <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>.</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -777 1112 865.1\\\" width=\\\"2.583ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mo>.</mo></math></span></span><script type=\\\"math/tex\\\">\\\\Delta .</script></span> We prove that graphs with maximum average degree less than 14/5 have semistrong chromatic index (hence uniquely restricted chromatic index) at most <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>+</mo><mn>4</mn><mo>,</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3335.9 1039.1\\\" width=\\\"7.748ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use><use x=\\\"3057\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>4</mn><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +4,</script></span> and we reduce the bound to <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>+</mo><mn>2</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -778.3 3057.4 909.7\\\" width=\\\"7.101ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>2</mn></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +2</script></span> if the maximum average degree is less than 8/3. These cases cover, in particular, the cases of planar graphs with girth at least 7 (resp. at least 8). </p><p>Our result makes some progress on the conjecture of Lužar et al. (J Graph Theory 105:612–632, 2024), which asserts that every planar graph <i>G</i> has a semistrong edge coloring with <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>+</mo><mi>C</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.109ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -777 3317.4 908.2\\\" width=\\\"7.705ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mi>C</mi></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +C</script></span> colors, for some universal constant <i>C</i>. (Note that such a conjecture would fail for strong edge coloring as there exist graphs with arbitrarily large maximum degree that are not strongly <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>4</mn><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>&#x2212;</mo><mn>5</mn><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 3836.4 1123.4\\\" width=\\\"8.91ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use><use x=\\\"890\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1945\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"2946\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use><use x=\\\"3446\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>4</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>−</mo><mn>5</mn><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(4\\\\Delta -5)</script></span>-edge-colorable.) We provide an example of a planar graph showing that the maximum semistrong chromatic index of planar graphs with maximum degree <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">&#x0394;</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 833.5 866.5\\\" width=\\\"1.936ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi></math></span></span><script type=\\\"math/tex\\\">\\\\Delta </script></span> is at least <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">&#x0394;</mi><mo>+</mo><mn>4.</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -778.3 3335.9 909.7\\\" width=\\\"7.748ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2556,0)\\\"><use xlink:href=\\\"#MJMAIN-34\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>4.</mn></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +4.</script></span></p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01346-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01346-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
引用
批量引用