平面图形的半强边着色

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yuquan Lin, Wensong Lin
{"title":"平面图形的半强边着色","authors":"Yuquan Lin, Wensong Lin","doi":"10.1007/s10878-025-01346-8","DOIUrl":null,"url":null,"abstract":"<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\"math/tex\">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 1908.5 1037.3\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use><use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\"math/tex\">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 1908.5 1039.1\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use><use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\"math/tex\">G_M,</script></span> then <i>M</i> is a <i>semistrong matching</i> of <i>G</i>; if all the vertices of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\"math/tex\">G_M</script></span> are pendant, then <i>M</i> is an <i>induced matching</i> of <i>G</i>. Strengthened notions of edge coloring and of the chromatic index follow. </p><p>In this paper, we consider the maximum semistrong chromatic index of planar graphs with given maximum degree <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.009ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -777 1112 865.1\" width=\"2.583ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"833\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi><mo>.</mo></math></span></span><script type=\"math/tex\">\\Delta .</script></span> We prove that graphs with maximum average degree less than 14/5 have semistrong chromatic index (hence uniquely restricted chromatic index) at most <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 3335.9 1039.1\" width=\"7.748ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use><use x=\"3057\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>4</mn><mo>,</mo></math></span></span><script type=\"math/tex\">2\\Delta +4,</script></span> and we reduce the bound to <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 3057.4 909.7\" width=\"7.101ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>2</mn></math></span></span><script type=\"math/tex\">2\\Delta +2</script></span> if the maximum average degree is less than 8/3. These cases cover, in particular, the cases of planar graphs with girth at least 7 (resp. at least 8). </p><p>Our result makes some progress on the conjecture of Lužar et al. (J Graph Theory 105:612–632, 2024), which asserts that every planar graph <i>G</i> has a semistrong edge coloring with <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.109ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -777 3317.4 908.2\" width=\"7.705ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2556\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mi>C</mi></math></span></span><script type=\"math/tex\">2\\Delta +C</script></span> colors, for some universal constant <i>C</i>. (Note that such a conjecture would fail for strong edge coloring as there exist graphs with arbitrarily large maximum degree that are not strongly <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 3836.4 1123.4\" width=\"8.91ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMAIN-34\" y=\"0\"></use><use x=\"890\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1945\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2946\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"3446\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>4</mn><mi mathvariant=\"normal\">Δ</mi><mo>−</mo><mn>5</mn><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(4\\Delta -5)</script></span>-edge-colorable.) We provide an example of a planar graph showing that the maximum semistrong chromatic index of planar graphs with maximum degree <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 833.5 866.5\" width=\"1.936ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi mathvariant=\"normal\">Δ</mi></math></span></span><script type=\"math/tex\">\\Delta </script></span> is at least <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\"normal\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4.&lt;/mn&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.113ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -778.3 3335.9 909.7\" width=\"7.748ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"500\" xlink:href=\"#MJMAIN-394\" y=\"0\"></use><use x=\"1556\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(2556,0)\"><use xlink:href=\"#MJMAIN-34\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>2</mn><mi mathvariant=\"normal\">Δ</mi><mo>+</mo><mn>4.</mn></math></span></span><script type=\"math/tex\">2\\Delta +4.</script></span></p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"135 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semistrong edge colorings of planar graphs\",\"authors\":\"Yuquan Lin, Wensong Lin\",\"doi\":\"10.1007/s10878-025-01346-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1630 995.9\\\" width=\\\"3.786ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\\\"math/tex\\\">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.409ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.605ex;\\\" viewbox=\\\"0 -777 1908.5 1037.3\\\" width=\\\"4.433ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use><use x=\\\"1630\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 1908.5 1039.1\\\" width=\\\"4.433ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use><use x=\\\"1630\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">G_M,</script></span> then <i>M</i> is a <i>semistrong matching</i> of <i>G</i>; if all the vertices of <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 1630 995.9\\\" width=\\\"3.786ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-47\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1112\\\" xlink:href=\\\"#MJMATHI-4D\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type=\\\"math/tex\\\">G_M</script></span> are pendant, then <i>M</i> is an <i>induced matching</i> of <i>G</i>. Strengthened notions of edge coloring and of the chromatic index follow. </p><p>In this paper, we consider the maximum semistrong chromatic index of planar graphs with given maximum degree <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.009ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -777 1112 865.1\\\" width=\\\"2.583ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"833\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi><mo>.</mo></math></span></span><script type=\\\"math/tex\\\">\\\\Delta .</script></span> We prove that graphs with maximum average degree less than 14/5 have semistrong chromatic index (hence uniquely restricted chromatic index) at most <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.413ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.606ex;\\\" viewbox=\\\"0 -778.3 3335.9 1039.1\\\" width=\\\"7.748ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use><use x=\\\"3057\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>4</mn><mo>,</mo></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +4,</script></span> and we reduce the bound to <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -778.3 3057.4 909.7\\\" width=\\\"7.101ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>2</mn></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +2</script></span> if the maximum average degree is less than 8/3. These cases cover, in particular, the cases of planar graphs with girth at least 7 (resp. at least 8). </p><p>Our result makes some progress on the conjecture of Lužar et al. (J Graph Theory 105:612–632, 2024), which asserts that every planar graph <i>G</i> has a semistrong edge coloring with <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.109ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -777 3317.4 908.2\\\" width=\\\"7.705ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2556\\\" xlink:href=\\\"#MJMATHI-43\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mi>C</mi></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +C</script></span> colors, for some universal constant <i>C</i>. (Note that such a conjecture would fail for strong edge coloring as there exist graphs with arbitrarily large maximum degree that are not strongly <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mo stretchy=\\\"false\\\"&gt;(&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;&amp;#x2212;&lt;/mo&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mo stretchy=\\\"false\\\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 3836.4 1123.4\\\" width=\\\"8.91ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"0\\\"></use><use x=\\\"890\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1945\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"2946\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use><use x=\\\"3446\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>4</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>−</mo><mn>5</mn><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(4\\\\Delta -5)</script></span>-edge-colorable.) We provide an example of a planar graph showing that the maximum semistrong chromatic index of planar graphs with maximum degree <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 833.5 866.5\\\" width=\\\"1.936ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi mathvariant=\\\"normal\\\">Δ</mi></math></span></span><script type=\\\"math/tex\\\">\\\\Delta </script></span> is at least <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi mathvariant=\\\"normal\\\"&gt;&amp;#x0394;&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;4.&lt;/mn&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.113ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -778.3 3335.9 909.7\\\" width=\\\"7.748ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-394\\\" y=\\\"0\\\"></use><use x=\\\"1556\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2556,0)\\\"><use xlink:href=\\\"#MJMAIN-34\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>2</mn><mi mathvariant=\\\"normal\\\">Δ</mi><mo>+</mo><mn>4.</mn></math></span></span><script type=\\\"math/tex\\\">2\\\\Delta +4.</script></span></p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01346-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01346-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

考虑了图G的匹配M的强化概念,要求匹配M对G的子图GMG_M具有一些性质,这些性质是由M所覆盖的顶点诱导的:如果M是GM,G_M的唯一完美匹配,则M是G的唯一限制匹配;若M的所有边都是GM,G_M的垂边,则M是G的半强匹配;如果GMG_M的所有顶点都是垂坠的,则M是g的诱导匹配。然后加强了边着色和色指数的概念。本文研究了最大度给定的平面图的最大半强色指数Δ。\三角洲。我们证明了最大平均度小于14/5的图最多在2Δ+4,2\Delta +4处具有半强色指数(即唯一受限色指数),并且当最大平均度小于8/3时,我们将界约为2Δ+22\Delta +2。这些情况特别涵盖了周长至少为7的平面图的情况。至少是8)。我们的结果在Lužar等人的猜想(J图论106:612 - 632,2024)上取得了一些进展,该猜想断言对于某些普遍常数C,每个平面图G具有2Δ+C2\Delta +C颜色的半强边着色(注意,这种猜想对于强边着色是失败的,因为存在具有任意大最大度的图,它们不是强(4Δ−5)(4\Delta -5)-边可着色)。我们给出了一个平面图的例子,证明了最大度为Δ\Delta的平面图的最大半强色指数至少为2Δ+4.2\Delta +4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semistrong edge colorings of planar graphs

Strengthened notions of a matching M of a graph G have been considered, requiring that the matching M has some properties with respect to the subgraph GM of G induced by the vertices covered by M: If M is the unique perfect matching of GM, then M is a uniquely restricted matching of G; if all the edges of M are pendant edges of GM, then M is a semistrong matching of G; if all the vertices of GM are pendant, then M is an induced matching of G. Strengthened notions of edge coloring and of the chromatic index follow.

In this paper, we consider the maximum semistrong chromatic index of planar graphs with given maximum degree Δ. We prove that graphs with maximum average degree less than 14/5 have semistrong chromatic index (hence uniquely restricted chromatic index) at most 2Δ+4, and we reduce the bound to 2Δ+2 if the maximum average degree is less than 8/3. These cases cover, in particular, the cases of planar graphs with girth at least 7 (resp. at least 8).

Our result makes some progress on the conjecture of Lužar et al. (J Graph Theory 105:612–632, 2024), which asserts that every planar graph G has a semistrong edge coloring with 2Δ+C colors, for some universal constant C. (Note that such a conjecture would fail for strong edge coloring as there exist graphs with arbitrarily large maximum degree that are not strongly (4Δ5)-edge-colorable.) We provide an example of a planar graph showing that the maximum semistrong chromatic index of planar graphs with maximum degree Δ is at least 2Δ+4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信