设施选址博弈中社会满意度最大化的无策略机制

IF 1.1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaowei Li, Xiwen Lu
{"title":"设施选址博弈中社会满意度最大化的无策略机制","authors":"Xiaowei Li, Xiwen Lu","doi":"10.1007/s10878-025-01341-z","DOIUrl":null,"url":null,"abstract":"<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-35\" y=\"575\"></use><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-34\" y=\"-524\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-33\" y=\"575\"></use><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.816ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -1209.6 2207.7 1642.8\" width=\"5.128ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1967\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,507)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(904,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-221A\" y=\"35\"></use><rect height=\"42\" stroke=\"none\" width=\"353\" x=\"589\" y=\"549\"></rect><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></g><use transform=\"scale(0.707)\" x=\"1141\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{1+\\sqrt{3}}{2}</script></span>-approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy-proof mechanisms for maximizing social satisfaction in the facility location game\",\"authors\":\"Xiaowei Li, Xiwen Lu\",\"doi\":\"10.1007/s10878-025-01341-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.215ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -950.8 713.9 1384.1\\\" width=\\\"1.658ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"473\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"575\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"-524\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.215ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -950.8 713.9 1384.1\\\" width=\\\"1.658ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"473\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"575\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msqrt&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.816ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -1209.6 2207.7 1642.8\\\" width=\\\"5.128ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"1967\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><g transform=\\\"translate(60,507)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(904,0)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-221A\\\" y=\\\"35\\\"></use><rect height=\\\"42\\\" stroke=\\\"none\\\" width=\\\"353\\\" x=\\\"589\\\" y=\\\"549\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"833\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"0\\\"></use></g></g><use transform=\\\"scale(0.707)\\\" x=\\\"1141\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{1+\\\\sqrt{3}}{2}</script></span>-approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01341-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01341-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了agent位置在一条直线上的设施位置博弈问题。输入包括代理报告的位置,这是作为游戏设置的一部分收集的。我们引入了公平性基线的概念,并定义了一个函数来表征每个代理对设施位置的满意度。我们的目标是建立一种获取agent真实信息并输出单个设施位置的机制,使所有agent对该位置的满意度总和最大化。对于两个智能体的博弈,我们提出了一个54 \frac{5}{4} -近似的防策略机制,这是最好的可能。在一般情况下,我们证明了中位数机制实现了32 \frac{3}{2}的近似比率。其中,中值机制是三个agent博弈的最优群体防策略机制。此外,我们通过修改中位数机制,设计了1+32 \frac{1+\sqrt{3}}{2} -逼近群策略证明机制。我们还考虑了令人讨厌的设施位置游戏中的社会满意度,并设计了一种基于输入中位数的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategy-proof mechanisms for maximizing social satisfaction in the facility location game

The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a 54-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of 32. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a 1+32-approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信