{"title":"设施选址博弈中社会满意度最大化的无策略机制","authors":"Xiaowei Li, Xiwen Lu","doi":"10.1007/s10878-025-01341-z","DOIUrl":null,"url":null,"abstract":"<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-35\" y=\"575\"></use><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-34\" y=\"-524\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-33\" y=\"575\"></use><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.816ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -1209.6 2207.7 1642.8\" width=\"5.128ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1967\" x=\"0\" y=\"220\"></rect><g transform=\"translate(60,507)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(904,0)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-221A\" y=\"35\"></use><rect height=\"42\" stroke=\"none\" width=\"353\" x=\"589\" y=\"549\"></rect><use transform=\"scale(0.707)\" x=\"833\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></g><use transform=\"scale(0.707)\" x=\"1141\" xlink:href=\"#MJMAIN-32\" y=\"-513\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math></span></span><script type=\"math/tex\">\\frac{1+\\sqrt{3}}{2}</script></span>-approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategy-proof mechanisms for maximizing social satisfaction in the facility location game\",\"authors\":\"Xiaowei Li, Xiwen Lu\",\"doi\":\"10.1007/s10878-025-01341-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.215ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -950.8 713.9 1384.1\\\" width=\\\"1.658ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"473\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"575\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-34\\\" y=\\\"-524\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.215ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -950.8 713.9 1384.1\\\" width=\\\"1.658ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"473\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"575\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"84\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.816ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.006ex;\\\" viewbox=\\\"0 -1209.6 2207.7 1642.8\\\" width=\\\"5.128ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"1967\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><g transform=\\\"translate(60,507)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><g transform=\\\"translate(904,0)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-221A\\\" y=\\\"35\\\"></use><rect height=\\\"42\\\" stroke=\\\"none\\\" width=\\\"353\\\" x=\\\"589\\\" y=\\\"549\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"833\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"0\\\"></use></g></g><use transform=\\\"scale(0.707)\\\" x=\\\"1141\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"-513\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mfrac><mrow><mn>1</mn><mo>+</mo><msqrt><mn>3</mn></msqrt></mrow><mn>2</mn></mfrac></math></span></span><script type=\\\"math/tex\\\">\\\\frac{1+\\\\sqrt{3}}{2}</script></span>-approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01341-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01341-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Strategy-proof mechanisms for maximizing social satisfaction in the facility location game
The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a -approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of . In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a -approximation group strategy-proof mechanism by modifying the median mechanism. We also consider social satisfaction in the obnoxious facility location game and design a mechanism based on the median of the input.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.