Freddie Illingworth, Richard Lang, Alp Müyesser, Olaf Parczyk, Amedeo Sgueglia
{"title":"狄拉克超图中的跨球","authors":"Freddie Illingworth, Richard Lang, Alp Müyesser, Olaf Parczyk, Amedeo Sgueglia","doi":"10.1007/s00493-025-00169-9","DOIUrl":null,"url":null,"abstract":"<p>We show that a <i>k</i>-uniform hypergraph on <i>n</i> vertices has a spanning subgraph homeomorphic to the <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 3023.9 1125.3\" width=\"7.023ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"389\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"1133\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"2133\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"2634\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">(k - 1)</script></span>-dimensional sphere provided that <i>H</i> has no isolated vertices and each set of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.109ex\" role=\"img\" style=\"vertical-align: -0.305ex;\" viewbox=\"0 -777 2244.9 908.2\" width=\"5.214ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"743\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"1744\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">k - 1</script></span> vertices supported by an edge is contained in at least <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -820.1 4689.4 1123.4\" width=\"10.892ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"600\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use x=\"1101\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><use x=\"1823\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"2824\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use x=\"3309\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"3699\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"4299\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n/2 + o(n)</script></span> edges. This gives a topological extension of Dirac’s theorem and asymptotically confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the Absorption Method, the Regularity Lemma or the Blow-up Lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host graph with a family of complete blow-ups.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spanning Spheres in Dirac Hypergraphs\",\"authors\":\"Freddie Illingworth, Richard Lang, Alp Müyesser, Olaf Parczyk, Amedeo Sgueglia\",\"doi\":\"10.1007/s00493-025-00169-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a <i>k</i>-uniform hypergraph on <i>n</i> vertices has a spanning subgraph homeomorphic to the <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 3023.9 1125.3\\\" width=\\\"7.023ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"389\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"1133\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"2133\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use x=\\\"2634\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">(k - 1)</script></span>-dimensional sphere provided that <i>H</i> has no isolated vertices and each set of <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.109ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.305ex;\\\" viewbox=\\\"0 -777 2244.9 908.2\\\" width=\\\"5.214ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"743\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"1744\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">k - 1</script></span> vertices supported by an edge is contained in at least <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -820.1 4689.4 1123.4\\\" width=\\\"10.892ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"600\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use x=\\\"1101\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use><use x=\\\"1823\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"2824\\\" xlink:href=\\\"#MJMATHI-6F\\\" y=\\\"0\\\"></use><use x=\\\"3309\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"3699\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"4299\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n/2 + o(n)</script></span> edges. This gives a topological extension of Dirac’s theorem and asymptotically confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the Absorption Method, the Regularity Lemma or the Blow-up Lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host graph with a family of complete blow-ups.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00169-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00169-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We show that a k-uniform hypergraph on n vertices has a spanning subgraph homeomorphic to the -dimensional sphere provided that H has no isolated vertices and each set of vertices supported by an edge is contained in at least edges. This gives a topological extension of Dirac’s theorem and asymptotically confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the Absorption Method, the Regularity Lemma or the Blow-up Lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host graph with a family of complete blow-ups.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.