求助PDF
{"title":"设置系统爆炸","authors":"Ryan Alweiss","doi":"10.1007/s00493-025-00163-1","DOIUrl":null,"url":null,"abstract":"<p>We prove that given a constant <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo>&#x2265;</mo><mn>2</mn></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 2356.1 995.9\" width=\"5.472ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"799\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1855\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi><mo>≥</mo><mn>2</mn></math></span></span><script type=\"math/tex\">k \\ge 2</script></span> and a large set system <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">F</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">F</mi></mrow></math></span></span><script type=\"math/tex\">\\mathcal {F}</script></span> of sets of size at most <i>w</i>, a typical <i>k</i>-tuple of sets <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>S</mi><mn>1</mn></msub><mo>,</mo><mo>&#x22EF;</mo><mo>,</mo><msub><mi>S</mi><mi>k</mi></msub><mo stretchy=\"false\">)</mo></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 5158.2 1125.3\" width=\"11.98ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(389,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"867\" xlink:href=\"#MJMAIN-31\" y=\"-213\"></use></g><use x=\"1456\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><use x=\"1902\" xlink:href=\"#MJMAIN-22EF\" y=\"0\"></use><use x=\"3241\" xlink:href=\"#MJMAIN-2C\" y=\"0\"></use><g transform=\"translate(3686,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"867\" xlink:href=\"#MJMATHI-6B\" y=\"-213\"></use></g><use x=\"4768\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mi>S</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>S</mi><mi>k</mi></msub><mo stretchy=\"false\">)</mo></math></span></span><script type=\"math/tex\">(S_1, \\cdots, S_k)</script></span> from <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">F</mi></mrow></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi mathvariant=\"script\">F</mi></mrow></math></span></span><script type=\"math/tex\">\\mathcal {F}</script></span> can be “blown up” in the following sense: for each <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>&#x2264;</mo><mi>i</mi><mo>&#x2264;</mo><mi>k</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 4035.6 995.9\" width=\"9.373ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"778\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"1834\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use x=\"2457\" xlink:href=\"#MJMAIN-2264\" y=\"0\"></use><use x=\"3514\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span></span><script type=\"math/tex\">1 \\le i \\le k</script></span>, we can find a large subfamily <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>i</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.209ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -733.9 1063.8 951.2\" width=\"2.471ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1017\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>i</mi></msub></math></span></span><script type=\"math/tex\">\\mathcal {F}_i</script></span> containing <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mi>i</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 957.8 994.3\" width=\"2.225ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"867\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mi>i</mi></msub></math></span></span><script type=\"math/tex\">S_i</script></span> so that for <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi><mo>&#x2260;</mo><mi>j</mi></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.509ex\" role=\"img\" style=\"vertical-align: -0.705ex;\" viewbox=\"0 -777 2092.1 1080.4\" width=\"4.859ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-69\" y=\"0\"></use><use x=\"623\" xlink:href=\"#MJMAIN-2260\" y=\"0\"></use><use x=\"1679\" xlink:href=\"#MJMATHI-6A\" y=\"0\"></use></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>i</mi><mo>≠</mo><mi>j</mi></math></span></span><script type=\"math/tex\">i \\ne j</script></span>, if <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>i</mi></msub><mo>&#x2208;</mo><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>i</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.209ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -733.9 3215.7 951.2\" width=\"7.469ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"826\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use><use x=\"1206\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(2151,0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1017\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>i</mi></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>i</mi></msub></math></span></span><script type=\"math/tex\">T_i \\in \\mathcal {F}_i</script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>j</mi></msub><mo>&#x2208;</mo><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>j</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.509ex\" role=\"img\" style=\"vertical-align: -0.805ex;\" viewbox=\"0 -733.9 3310.4 1080.4\" width=\"7.689ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"826\" xlink:href=\"#MJMATHI-6A\" y=\"-213\"></use><use x=\"1253\" xlink:href=\"#MJMAIN-2208\" y=\"0\"></use><g transform=\"translate(2199,0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1017\" xlink:href=\"#MJMATHI-6A\" y=\"-213\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>j</mi></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"script\">F</mi></mrow><mi>j</mi></msub></math></span></span><script type=\"math/tex\">T_j \\in \\mathcal {F}_j</script></span>, then <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>i</mi></msub><mo>&#x2229;</mo><msub><mi>T</mi><mi>j</mi></msub><mo>=</mo><msub><mi>S</mi><mi>i</mi></msub><mo>&#x2229;</mo><msub><mi>S</mi><mi>j</mi></msub></math>' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.609ex\" role=\"img\" style=\"vertical-align: -0.805ex;\" viewbox=\"0 -777 7425.9 1123.4\" width=\"17.247ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"826\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use><use x=\"1151\" xlink:href=\"#MJMAIN-2229\" y=\"0\"></use><g transform=\"translate(2040,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-54\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"826\" xlink:href=\"#MJMATHI-6A\" y=\"-213\"></use></g><use x=\"3294\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><g transform=\"translate(4350,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"867\" xlink:href=\"#MJMATHI-69\" y=\"-213\"></use></g><use x=\"5531\" xlink:href=\"#MJMAIN-2229\" y=\"0\"></use><g transform=\"translate(6420,0)\"><use x=\"0\" xlink:href=\"#MJMATHI-53\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"867\" xlink:href=\"#MJMATHI-6A\" y=\"-213\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>i</mi></msub><mo>∩</mo><msub><mi>T</mi><mi>j</mi></msub><mo>=</mo><msub><mi>S</mi><mi>i</mi></msub><mo>∩</mo><msub><mi>S</mi><mi>j</mi></msub></math></span></span><script type=\"math/tex\">T_i \\cap T_j=S_i \\cap S_j</script></span>. We also show that the answer to the multicolor version of the sunflower conjecture is the same as the answer for the original, up to an exponential factor.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set System Blowups\",\"authors\":\"Ryan Alweiss\",\"doi\":\"10.1007/s00493-025-00163-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that given a constant <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi><mo>&#x2265;</mo><mn>2</mn></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 2356.1 995.9\\\" width=\\\"5.472ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"799\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1855\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi><mo>≥</mo><mn>2</mn></math></span></span><script type=\\\"math/tex\\\">k \\\\ge 2</script></span> and a large set system <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 829.5 823.4\\\" width=\\\"1.927ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow></math></span></span><script type=\\\"math/tex\\\">\\\\mathcal {F}</script></span> of sets of size at most <i>w</i>, a typical <i>k</i>-tuple of sets <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mi>S</mi><mn>1</mn></msub><mo>,</mo><mo>&#x22EF;</mo><mo>,</mo><msub><mi>S</mi><mi>k</mi></msub><mo stretchy=\\\"false\\\">)</mo></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 5158.2 1125.3\\\" width=\\\"11.98ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"867\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"-213\\\"></use></g><use x=\\\"1456\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><use x=\\\"1902\\\" xlink:href=\\\"#MJMAIN-22EF\\\" y=\\\"0\\\"></use><use x=\\\"3241\\\" xlink:href=\\\"#MJMAIN-2C\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3686,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"867\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"-213\\\"></use></g><use x=\\\"4768\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mi>S</mi><mn>1</mn></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mi>S</mi><mi>k</mi></msub><mo stretchy=\\\"false\\\">)</mo></math></span></span><script type=\\\"math/tex\\\">(S_1, \\\\cdots, S_k)</script></span> from <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 829.5 823.4\\\" width=\\\"1.927ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow></math></span></span><script type=\\\"math/tex\\\">\\\\mathcal {F}</script></span> can be “blown up” in the following sense: for each <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>&#x2264;</mo><mi>i</mi><mo>&#x2264;</mo><mi>k</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.313ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -778.3 4035.6 995.9\\\" width=\\\"9.373ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use x=\\\"778\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"1834\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"0\\\"></use><use x=\\\"2457\\\" xlink:href=\\\"#MJMAIN-2264\\\" y=\\\"0\\\"></use><use x=\\\"3514\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi></math></span></span><script type=\\\"math/tex\\\">1 \\\\le i \\\\le k</script></span>, we can find a large subfamily <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>i</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.209ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -733.9 1063.8 951.2\\\" width=\\\"2.471ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1017\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>i</mi></msub></math></span></span><script type=\\\"math/tex\\\">\\\\mathcal {F}_i</script></span> containing <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>S</mi><mi>i</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -777 957.8 994.3\\\" width=\\\"2.225ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"867\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>S</mi><mi>i</mi></msub></math></span></span><script type=\\\"math/tex\\\">S_i</script></span> so that for <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>i</mi><mo>&#x2260;</mo><mi>j</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.509ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.705ex;\\\" viewbox=\\\"0 -777 2092.1 1080.4\\\" width=\\\"4.859ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"0\\\"></use><use x=\\\"623\\\" xlink:href=\\\"#MJMAIN-2260\\\" y=\\\"0\\\"></use><use x=\\\"1679\\\" xlink:href=\\\"#MJMATHI-6A\\\" y=\\\"0\\\"></use></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>i</mi><mo>≠</mo><mi>j</mi></math></span></span><script type=\\\"math/tex\\\">i \\\\ne j</script></span>, if <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>i</mi></msub><mo>&#x2208;</mo><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>i</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.209ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -733.9 3215.7 951.2\\\" width=\\\"7.469ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"826\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use><use x=\\\"1206\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2151,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1017\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>i</mi></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>i</mi></msub></math></span></span><script type=\\\"math/tex\\\">T_i \\\\in \\\\mathcal {F}_i</script></span> and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>j</mi></msub><mo>&#x2208;</mo><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>j</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.509ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.805ex;\\\" viewbox=\\\"0 -733.9 3310.4 1080.4\\\" width=\\\"7.689ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"826\\\" xlink:href=\\\"#MJMATHI-6A\\\" y=\\\"-213\\\"></use><use x=\\\"1253\\\" xlink:href=\\\"#MJMAIN-2208\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2199,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1017\\\" xlink:href=\\\"#MJMATHI-6A\\\" y=\\\"-213\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>j</mi></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"script\\\">F</mi></mrow><mi>j</mi></msub></math></span></span><script type=\\\"math/tex\\\">T_j \\\\in \\\\mathcal {F}_j</script></span>, then <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>i</mi></msub><mo>&#x2229;</mo><msub><mi>T</mi><mi>j</mi></msub><mo>=</mo><msub><mi>S</mi><mi>i</mi></msub><mo>&#x2229;</mo><msub><mi>S</mi><mi>j</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 100%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.609ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.805ex;\\\" viewbox=\\\"0 -777 7425.9 1123.4\\\" width=\\\"17.247ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"826\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use><use x=\\\"1151\\\" xlink:href=\\\"#MJMAIN-2229\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2040,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-54\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"826\\\" xlink:href=\\\"#MJMATHI-6A\\\" y=\\\"-213\\\"></use></g><use x=\\\"3294\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><g transform=\\\"translate(4350,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"867\\\" xlink:href=\\\"#MJMATHI-69\\\" y=\\\"-213\\\"></use></g><use x=\\\"5531\\\" xlink:href=\\\"#MJMAIN-2229\\\" y=\\\"0\\\"></use><g transform=\\\"translate(6420,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-53\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"867\\\" xlink:href=\\\"#MJMATHI-6A\\\" y=\\\"-213\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi>T</mi><mi>i</mi></msub><mo>∩</mo><msub><mi>T</mi><mi>j</mi></msub><mo>=</mo><msub><mi>S</mi><mi>i</mi></msub><mo>∩</mo><msub><mi>S</mi><mi>j</mi></msub></math></span></span><script type=\\\"math/tex\\\">T_i \\\\cap T_j=S_i \\\\cap S_j</script></span>. We also show that the answer to the multicolor version of the sunflower conjecture is the same as the answer for the original, up to an exponential factor.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00163-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00163-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用