将锦标赛划分为高连通性的子锦标赛

IF 1 2区 数学 Q1 MATHEMATICS
António Girão, Shoham Letzter
{"title":"将锦标赛划分为高连通性的子锦标赛","authors":"António Girão, Shoham Letzter","doi":"10.1007/s00493-025-00161-3","DOIUrl":null,"url":null,"abstract":"<p>We prove that there exists a constant <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2268.1 823.4\" width=\"5.268ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"711\" xlink:href=\"#MJMAIN-3E\" y=\"0\"></use><use x=\"1767\" xlink:href=\"#MJMAIN-30\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c > 0</script></span> such that the vertices of every strongly <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.013ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -778.3 2039.4 866.5\" width=\"4.737ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-63\" y=\"0\"></use><use x=\"655\" xlink:href=\"#MJMAIN-22C5\" y=\"0\"></use><use x=\"1156\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"1677\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">c \\cdot kt</script></span>-connected tournament can be partitioned into <i>t</i> parts, each of which induces a strongly <i>k</i>-connected tournament. This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend (2016).</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioning a tournament into sub-tournaments of high connectivity\",\"authors\":\"António Girão, Shoham Letzter\",\"doi\":\"10.1007/s00493-025-00161-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that there exists a constant <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 2268.1 823.4\\\" width=\\\"5.268ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"711\\\" xlink:href=\\\"#MJMAIN-3E\\\" y=\\\"0\\\"></use><use x=\\\"1767\\\" xlink:href=\\\"#MJMAIN-30\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">c > 0</script></span> such that the vertices of every strongly <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.013ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -778.3 2039.4 866.5\\\" width=\\\"4.737ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-63\\\" y=\\\"0\\\"></use><use x=\\\"655\\\" xlink:href=\\\"#MJMAIN-22C5\\\" y=\\\"0\\\"></use><use x=\\\"1156\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"1677\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">c \\\\cdot kt</script></span>-connected tournament can be partitioned into <i>t</i> parts, each of which induces a strongly <i>k</i>-connected tournament. This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend (2016).</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00161-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00161-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了存在一个常数c > 0,使得每一个强c \cdot kt连通比武的顶点可以划分为t个部分,每一个部分都可以导出一个强k连通比武。这显然是一个常数因素,它证实了k hn, Osthus和Townsend(2016)的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioning a tournament into sub-tournaments of high connectivity

We prove that there exists a constant such that the vertices of every strongly -connected tournament can be partitioned into t parts, each of which induces a strongly k-connected tournament. This is clearly tight up to a constant factor, and it confirms a conjecture of Kühn, Osthus and Townsend (2016).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信