关于向r- t相交的统一族

IF 1 2区 数学 Q1 MATHEMATICS
Peter Frankl, Jian Wang
{"title":"关于向r- t相交的统一族","authors":"Peter Frankl, Jian Wang","doi":"10.1007/s00493-025-00166-y","DOIUrl":null,"url":null,"abstract":"<p>We consider families, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\mathcal {F}</script></span> of <i>k</i>-subsets of an <i>n</i>-set. For integers <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2286.1 952.8\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r\\ge 2</script></span>, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2196.1 952.8\" width=\"5.101ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"639\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1695\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">t\\ge 1</script></span>, <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 829.5 823.4\" width=\"1.927ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJCAL-46\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">\\mathcal {F}</script></span> is called <i>r</i>-wise <i>t</i>-intersecting if any <i>r</i> of its members have at least <i>t</i> elements in common. The most natural construction of such a family is the full <i>t</i>-star, consisting of all <i>k</i>-sets containing a fixed <i>t</i>-set. In the case <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.912ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -735.2 2286.1 823.4\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-3D\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r=2</script></span> the Exact Erdős-Ko-Rado Theorem shows that the full <i>t</i>-star is largest if <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.614ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -821.4 9406.9 1125.3\" width=\"21.848ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"2324\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"2907\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"3908\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"4409\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"4798\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"5188\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"5931\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"6932\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"7516\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"8516\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"9017\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n\\ge (t+1)(k-t+1)</script></span>. In the present paper, we prove that for <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 11566.2 1254.7\" width=\"26.864ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"878\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1934\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><g transform=\"translate(2324,0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g><use x=\"3603\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><g transform=\"translate(3965,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><g transform=\"translate(389,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"500\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1001\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1390\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1842\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"2620\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"3121\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g><use x=\"6936\" xlink:href=\"#MJMAIN-28\" y=\"0\"></use><use x=\"7326\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use><use x=\"8070\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use x=\"9070\" xlink:href=\"#MJMATHI-74\" y=\"0\"></use><use x=\"9432\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use><use x=\"10044\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><use x=\"11044\" xlink:href=\"#MJMATHI-6B\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">n\\ge (2.5t)^{1/(r-1)}(k-t)+k</script></span>, the full <i>t</i>-star is largest in case of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.213ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -735.2 2286.1 952.8\" width=\"5.31ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use x=\"729\" xlink:href=\"#MJMAIN-2265\" y=\"0\"></use><use x=\"1785\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></svg></span><script type=\"math/tex\">r\\ge 3</script></span>. Examples show that the exponent <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"3.309ex\" role=\"img\" style=\"vertical-align: -1.105ex;\" viewbox=\"0 -949.2 1583.6 1424.8\" width=\"3.678ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g transform=\"translate(120,0)\"><rect height=\"60\" stroke=\"none\" width=\"1343\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"699\" xlink:href=\"#MJMAIN-31\" y=\"556\"></use><g transform=\"translate(60,-363)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"451\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1230\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">\\frac{1}{r-1}</script></span> is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On r-wise t-intersecting Uniform Families\",\"authors\":\"Peter Frankl, Jian Wang\",\"doi\":\"10.1007/s00493-025-00166-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider families, <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 829.5 823.4\\\" width=\\\"1.927ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\mathcal {F}</script></span> of <i>k</i>-subsets of an <i>n</i>-set. For integers <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 2286.1 952.8\\\" width=\\\"5.31ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-72\\\" y=\\\"0\\\"></use><use x=\\\"729\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1785\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">r\\\\ge 2</script></span>, <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 2196.1 952.8\\\" width=\\\"5.101ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use><use x=\\\"639\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1695\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">t\\\\ge 1</script></span>, <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 829.5 823.4\\\" width=\\\"1.927ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJCAL-46\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">\\\\mathcal {F}</script></span> is called <i>r</i>-wise <i>t</i>-intersecting if any <i>r</i> of its members have at least <i>t</i> elements in common. The most natural construction of such a family is the full <i>t</i>-star, consisting of all <i>k</i>-sets containing a fixed <i>t</i>-set. In the case <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"1.912ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.205ex;\\\" viewbox=\\\"0 -735.2 2286.1 823.4\\\" width=\\\"5.31ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-72\\\" y=\\\"0\\\"></use><use x=\\\"729\\\" xlink:href=\\\"#MJMAIN-3D\\\" y=\\\"0\\\"></use><use x=\\\"1785\\\" xlink:href=\\\"#MJMAIN-32\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">r=2</script></span> the Exact Erdős-Ko-Rado Theorem shows that the full <i>t</i>-star is largest if <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.614ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -821.4 9406.9 1125.3\\\" width=\\\"21.848ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"878\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1934\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"2324\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use><use x=\\\"2907\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"3908\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use x=\\\"4409\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"4798\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"5188\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"5931\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"6932\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use><use x=\\\"7516\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"8516\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use x=\\\"9017\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n\\\\ge (t+1)(k-t+1)</script></span>. In the present paper, we prove that for <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.914ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.706ex;\\\" viewbox=\\\"0 -950.8 11566.2 1254.7\\\" width=\\\"26.864ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-6E\\\" y=\\\"0\\\"></use><use x=\\\"878\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1934\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><g transform=\\\"translate(2324,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-35\\\" y=\\\"0\\\"></use></g><use x=\\\"3603\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use><g transform=\\\"translate(3965,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><g transform=\\\"translate(389,362)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2F\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1001\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1390\\\" xlink:href=\\\"#MJMATHI-72\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1842\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"2620\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"3121\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use></g></g><use x=\\\"6936\\\" xlink:href=\\\"#MJMAIN-28\\\" y=\\\"0\\\"></use><use x=\\\"7326\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use><use x=\\\"8070\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use x=\\\"9070\\\" xlink:href=\\\"#MJMATHI-74\\\" y=\\\"0\\\"></use><use x=\\\"9432\\\" xlink:href=\\\"#MJMAIN-29\\\" y=\\\"0\\\"></use><use x=\\\"10044\\\" xlink:href=\\\"#MJMAIN-2B\\\" y=\\\"0\\\"></use><use x=\\\"11044\\\" xlink:href=\\\"#MJMATHI-6B\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">n\\\\ge (2.5t)^{1/(r-1)}(k-t)+k</script></span>, the full <i>t</i>-star is largest in case of <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"2.213ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.505ex;\\\" viewbox=\\\"0 -735.2 2286.1 952.8\\\" width=\\\"5.31ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMATHI-72\\\" y=\\\"0\\\"></use><use x=\\\"729\\\" xlink:href=\\\"#MJMAIN-2265\\\" y=\\\"0\\\"></use><use x=\\\"1785\\\" xlink:href=\\\"#MJMAIN-33\\\" y=\\\"0\\\"></use></g></svg></span><script type=\\\"math/tex\\\">r\\\\ge 3</script></span>. Examples show that the exponent <span><span style=\\\"\\\"></span><span style=\\\"font-size: 100%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"3.309ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.105ex;\\\" viewbox=\\\"0 -949.2 1583.6 1424.8\\\" width=\\\"3.678ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g transform=\\\"translate(120,0)\\\"><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"1343\\\" x=\\\"0\\\" y=\\\"220\\\"></rect><use transform=\\\"scale(0.707)\\\" x=\\\"699\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"556\\\"></use><g transform=\\\"translate(60,-363)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"0\\\" xlink:href=\\\"#MJMATHI-72\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"451\\\" xlink:href=\\\"#MJMAIN-2212\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"1230\\\" xlink:href=\\\"#MJMAIN-31\\\" y=\\\"0\\\"></use></g></g></g></svg></span><script type=\\\"math/tex\\\">\\\\frac{1}{r-1}</script></span> is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00166-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00166-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑族,\mathcal F{ (n集合的k个子集)对于整数r }\ge 2, t \ge 1, \mathcal,如果它的任意r个元素至少有t个相同的元素,则{F}称为r向t相交。这类族最自然的构造是全t星,它由包含一个固定t集的所有k个集合组成。在r=2的情况下,精确Erdős-Ko-Rado定理表明,当n \ge (t+1)(k-t+1)时,完整t星最大。在本文中,我们证明了对于n \ge (2.5t)^{1/(r-1)}(k-t)+k,当r \ge 3时,完整的t星是最大的。示例表明,指数\frac{1}{r-1}是最好的可能。这比巴洛格和林茨最近的结果有了相当大的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On r-wise t-intersecting Uniform Families

We consider families, of k-subsets of an n-set. For integers , , is called r-wise t-intersecting if any r of its members have at least t elements in common. The most natural construction of such a family is the full t-star, consisting of all k-sets containing a fixed t-set. In the case the Exact Erdős-Ko-Rado Theorem shows that the full t-star is largest if . In the present paper, we prove that for , the full t-star is largest in case of . Examples show that the exponent is best possible. This represents a considerable improvement on a recent result of Balogh and Linz.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信