具有成对代价函数的多边际最优运输的ODE表征

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Luca Nenna, Brendan Pass
{"title":"具有成对代价函数的多边际最优运输的ODE表征","authors":"Luca Nenna, Brendan Pass","doi":"10.1093/imanum/draf067","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one-parameter family of cost functions that interpolates between the original and a special cost function for which the problem’s complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\\varepsilon $, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge–Kutta schemes to compute solutions to the ordinary differential equation, and, as a result, the multi-marginal optimal transport problem.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"64 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ODE characterization of multi-marginal optimal transport with pairwise cost functions\",\"authors\":\"Luca Nenna, Brendan Pass\",\"doi\":\"10.1093/imanum/draf067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one-parameter family of cost functions that interpolates between the original and a special cost function for which the problem’s complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\\\\varepsilon $, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge–Kutta schemes to compute solutions to the ordinary differential equation, and, as a result, the multi-marginal optimal transport problem.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf067\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf067","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是引入一种新的求解具有两两交互代价的多边际最优运输问题的数值方法。多边际最优运输的复杂性一般按边际数量呈指数级增长。我们引入了一个单参数的成本函数族,它在原始成本函数和一个特殊的成本函数之间进行插值,对于这个函数,问题的复杂性以$m$线性缩放。然后,我们证明通过求解参数$\varepsilon $中的常微分方程可以恢复原问题的解,其初始条件对应于上述特殊代价函数的解;然后,我们提出了一些模拟,使用显式欧拉和显式高阶龙格-库塔格式来计算常微分方程的解,并作为结果,多边际最优传输问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ODE characterization of multi-marginal optimal transport with pairwise cost functions
The purpose of this paper is to introduce a new numerical method to solve multi-marginal optimal transport problems with pairwise interaction costs. The complexity of multi-marginal optimal transport generally scales exponentially in the number of marginals $m$. We introduce a one-parameter family of cost functions that interpolates between the original and a special cost function for which the problem’s complexity scales linearly in $m$. We then show that the solution to the original problem can be recovered by solving an ordinary differential equation in the parameter $\varepsilon $, whose initial condition corresponds to the solution for the special cost function mentioned above; we then present some simulations, using both explicit Euler and explicit higher order Runge–Kutta schemes to compute solutions to the ordinary differential equation, and, as a result, the multi-marginal optimal transport problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信