碳在3C - SiC中的间隙扩散:电荷态跃迁和熵的作用

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Pan Deng, Xuanyu Jiang, Xiaodong Pi, Deren Yang, Tianqi Deng
{"title":"碳在3C - SiC中的间隙扩散:电荷态跃迁和熵的作用","authors":"Pan Deng, Xuanyu Jiang, Xiaodong Pi, Deren Yang, Tianqi Deng","doi":"10.1002/adts.202501088","DOIUrl":null,"url":null,"abstract":"As a radiation‐resistant wide‐bandgap semiconductor, the self‐healing capability of 3C‐SiC is highly dependent on the diffusion of carbon interstitials (C<jats:sub>i</jats:sub>). However, understanding of the thermodynamic and kinetic behaviors of C<jats:sub>i</jats:sub> diffusion under various influencing factors remains limited. In this work, first‐principles calculations reveal a strong dependence of the diffusion free‐energy barrier on charge states, Fermi level, and temperature. The entropic effects on the diffusion process at finite temperatures are systematically explored using machine learning force field and enhanced sampling techniques. Notably, appropriate n‐type doping and entropic effects contribute to the suppression of free‐energy barrier for the C<jats:sub>i</jats:sub> diffusion process. A C<jats:sub>i</jats:sub> diffusion activation temperature diagram is constructed, taking into account charge‐state transitions and entropic contributions. Furthermore, the kinetic diffusion coefficients under different conditions are quantitatively evaluated. Major native point defects have also been assessed to clarify their role in promoting or inhibiting C<jats:sub>i</jats:sub> diffusion. These findings provide a fundamental understanding of the thermodynamic and kinetic behaviors of C<jats:sub>i</jats:sub> diffusion, offering physical insights into the defect evolution in 3C‐SiC.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Interstitial Diffusion in 3C‐SiC: Role of Charge‐State Transitions and Entropy\",\"authors\":\"Pan Deng, Xuanyu Jiang, Xiaodong Pi, Deren Yang, Tianqi Deng\",\"doi\":\"10.1002/adts.202501088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a radiation‐resistant wide‐bandgap semiconductor, the self‐healing capability of 3C‐SiC is highly dependent on the diffusion of carbon interstitials (C<jats:sub>i</jats:sub>). However, understanding of the thermodynamic and kinetic behaviors of C<jats:sub>i</jats:sub> diffusion under various influencing factors remains limited. In this work, first‐principles calculations reveal a strong dependence of the diffusion free‐energy barrier on charge states, Fermi level, and temperature. The entropic effects on the diffusion process at finite temperatures are systematically explored using machine learning force field and enhanced sampling techniques. Notably, appropriate n‐type doping and entropic effects contribute to the suppression of free‐energy barrier for the C<jats:sub>i</jats:sub> diffusion process. A C<jats:sub>i</jats:sub> diffusion activation temperature diagram is constructed, taking into account charge‐state transitions and entropic contributions. Furthermore, the kinetic diffusion coefficients under different conditions are quantitatively evaluated. Major native point defects have also been assessed to clarify their role in promoting or inhibiting C<jats:sub>i</jats:sub> diffusion. These findings provide a fundamental understanding of the thermodynamic and kinetic behaviors of C<jats:sub>i</jats:sub> diffusion, offering physical insights into the defect evolution in 3C‐SiC.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

作为一种抗辐射的宽禁带半导体,3C - SiC的自愈能力高度依赖于碳间质(Ci)的扩散。然而,对各种影响因素下Ci扩散的热力学和动力学行为的了解仍然有限。在这项工作中,第一性原理计算揭示了扩散自由能势垒对电荷态、费米能级和温度的强烈依赖。利用机器学习力场和增强采样技术系统地探讨了有限温度下扩散过程中的熵效应。值得注意的是,适当的n型掺杂和熵效应有助于抑制Ci扩散过程的自由能势垒。考虑电荷态跃迁和熵的贡献,构造了一个Ci扩散激活温度图。并定量计算了不同条件下的动力学扩散系数。主要的原生点缺陷也被评估以阐明它们在促进或抑制Ci扩散中的作用。这些发现提供了对Ci扩散的热力学和动力学行为的基本理解,为3C‐SiC中缺陷的演变提供了物理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Interstitial Diffusion in 3C‐SiC: Role of Charge‐State Transitions and Entropy
As a radiation‐resistant wide‐bandgap semiconductor, the self‐healing capability of 3C‐SiC is highly dependent on the diffusion of carbon interstitials (Ci). However, understanding of the thermodynamic and kinetic behaviors of Ci diffusion under various influencing factors remains limited. In this work, first‐principles calculations reveal a strong dependence of the diffusion free‐energy barrier on charge states, Fermi level, and temperature. The entropic effects on the diffusion process at finite temperatures are systematically explored using machine learning force field and enhanced sampling techniques. Notably, appropriate n‐type doping and entropic effects contribute to the suppression of free‐energy barrier for the Ci diffusion process. A Ci diffusion activation temperature diagram is constructed, taking into account charge‐state transitions and entropic contributions. Furthermore, the kinetic diffusion coefficients under different conditions are quantitatively evaluated. Major native point defects have also been assessed to clarify their role in promoting or inhibiting Ci diffusion. These findings provide a fundamental understanding of the thermodynamic and kinetic behaviors of Ci diffusion, offering physical insights into the defect evolution in 3C‐SiC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信