Ying-Xiao Yue, Ya-Ting Bian, Yu-Fan Cheng, Lu He, Dan Wang, Pei-Xia Yan, Wei Yan, Gui-Ying Liu, Huan Song, Liang-Po Liu
{"title":"[固相萃取-高效液相色谱-串联质谱法测定人血清中26种全氟和多氟烷基化合物]","authors":"Ying-Xiao Yue, Ya-Ting Bian, Yu-Fan Cheng, Lu He, Dan Wang, Pei-Xia Yan, Wei Yan, Gui-Ying Liu, Huan Song, Liang-Po Liu","doi":"10.3724/SP.J.1123.2024.10002","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluorinated and polyfluoroalkyl compounds (PFASs) represent a category of synthetic chemicals renowned for their environmental persistence. Owing to their hydrophobic, oleophobic, and high-temperature-resistant properties, PFASs are extensively utilized in industrial, agricultural, and civilian sectors, including applications in leather, textiles, flame-retardant materials, lubricants, and coatings, among others. PFASs can accumulate within the human body, exhibiting multi-organ toxicity. Continuous monitoring of PFASs with ambiguous toxicity profiles is vital for evaluating human exposure and associated health risks. Consequently, the establishment of a high-throughput and highly sensitive detection method is of paramount importance for accurately assessing the exposure levels of PFASs in the human body. In this study, a commercial high-throughput HMR-Lipid 96-well solid-phase extraction plate was adopted, combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to establish a simple, efficient method that can simultaneously quantitatively detect 26 PFASs in human serum. Serum samples were extracted using the HMR-lipid 96-well solid-phase extraction plate. The Phenomenex C<sub>18</sub> chromatography column (250 mm×4.6 mm, 5 μm) was used as the capture column and connected between the liquid chromatography mixer and the autosampler to avoid high background pollution. The target compounds were separated by the Accucore C<sub>18</sub> chromatography column (100 mm×2.4 mm, 2.6 μm) and analyzed using the electrospray ionization with negative ion scanning mode and multiple reaction monitoring (MRM) mode. The methodological validation results indicated that the 26 PFASs had good linear relationships within the range of 0.2-100 ng/mL, with correlation coefficients (<i>r</i>) of 0.995 1-0.999 9. The limits of detection (LODs) and quantification (LOQs) were 0.01-0.15 ng/mL and 0.02-0.47 ng/mL, respectively. At three spiked levels of low, medium and high, the recoveries of the 26 PFASs ranged from 80.1% to 119.5%, and the relative standard deviations (RSDs) ranged from 0.5% to 11.9%. This method has the advantages of high sensitivity, good accuracy, simple operation, fast extraction speed, low reagent consumption and small sample volume required. It is suitable for large-scale population biological monitoring and provides a scientific method support for accurately assessing the exposure of PFASs in the human body and its potential health risks.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"43 9","pages":"1005-1013"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412018/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Determination of 26 perfluorinated and polyfluoroalkyl compounds in human serum by solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry].\",\"authors\":\"Ying-Xiao Yue, Ya-Ting Bian, Yu-Fan Cheng, Lu He, Dan Wang, Pei-Xia Yan, Wei Yan, Gui-Ying Liu, Huan Song, Liang-Po Liu\",\"doi\":\"10.3724/SP.J.1123.2024.10002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perfluorinated and polyfluoroalkyl compounds (PFASs) represent a category of synthetic chemicals renowned for their environmental persistence. Owing to their hydrophobic, oleophobic, and high-temperature-resistant properties, PFASs are extensively utilized in industrial, agricultural, and civilian sectors, including applications in leather, textiles, flame-retardant materials, lubricants, and coatings, among others. PFASs can accumulate within the human body, exhibiting multi-organ toxicity. Continuous monitoring of PFASs with ambiguous toxicity profiles is vital for evaluating human exposure and associated health risks. Consequently, the establishment of a high-throughput and highly sensitive detection method is of paramount importance for accurately assessing the exposure levels of PFASs in the human body. In this study, a commercial high-throughput HMR-Lipid 96-well solid-phase extraction plate was adopted, combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to establish a simple, efficient method that can simultaneously quantitatively detect 26 PFASs in human serum. Serum samples were extracted using the HMR-lipid 96-well solid-phase extraction plate. The Phenomenex C<sub>18</sub> chromatography column (250 mm×4.6 mm, 5 μm) was used as the capture column and connected between the liquid chromatography mixer and the autosampler to avoid high background pollution. The target compounds were separated by the Accucore C<sub>18</sub> chromatography column (100 mm×2.4 mm, 2.6 μm) and analyzed using the electrospray ionization with negative ion scanning mode and multiple reaction monitoring (MRM) mode. The methodological validation results indicated that the 26 PFASs had good linear relationships within the range of 0.2-100 ng/mL, with correlation coefficients (<i>r</i>) of 0.995 1-0.999 9. The limits of detection (LODs) and quantification (LOQs) were 0.01-0.15 ng/mL and 0.02-0.47 ng/mL, respectively. At three spiked levels of low, medium and high, the recoveries of the 26 PFASs ranged from 80.1% to 119.5%, and the relative standard deviations (RSDs) ranged from 0.5% to 11.9%. This method has the advantages of high sensitivity, good accuracy, simple operation, fast extraction speed, low reagent consumption and small sample volume required. It is suitable for large-scale population biological monitoring and provides a scientific method support for accurately assessing the exposure of PFASs in the human body and its potential health risks.</p>\",\"PeriodicalId\":101336,\"journal\":{\"name\":\"Se pu = Chinese journal of chromatography\",\"volume\":\"43 9\",\"pages\":\"1005-1013\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412018/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Se pu = Chinese journal of chromatography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1123.2024.10002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Se pu = Chinese journal of chromatography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3724/SP.J.1123.2024.10002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Determination of 26 perfluorinated and polyfluoroalkyl compounds in human serum by solid-phase extraction-high performance liquid chromatography-tandem mass spectrometry].
Perfluorinated and polyfluoroalkyl compounds (PFASs) represent a category of synthetic chemicals renowned for their environmental persistence. Owing to their hydrophobic, oleophobic, and high-temperature-resistant properties, PFASs are extensively utilized in industrial, agricultural, and civilian sectors, including applications in leather, textiles, flame-retardant materials, lubricants, and coatings, among others. PFASs can accumulate within the human body, exhibiting multi-organ toxicity. Continuous monitoring of PFASs with ambiguous toxicity profiles is vital for evaluating human exposure and associated health risks. Consequently, the establishment of a high-throughput and highly sensitive detection method is of paramount importance for accurately assessing the exposure levels of PFASs in the human body. In this study, a commercial high-throughput HMR-Lipid 96-well solid-phase extraction plate was adopted, combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), to establish a simple, efficient method that can simultaneously quantitatively detect 26 PFASs in human serum. Serum samples were extracted using the HMR-lipid 96-well solid-phase extraction plate. The Phenomenex C18 chromatography column (250 mm×4.6 mm, 5 μm) was used as the capture column and connected between the liquid chromatography mixer and the autosampler to avoid high background pollution. The target compounds were separated by the Accucore C18 chromatography column (100 mm×2.4 mm, 2.6 μm) and analyzed using the electrospray ionization with negative ion scanning mode and multiple reaction monitoring (MRM) mode. The methodological validation results indicated that the 26 PFASs had good linear relationships within the range of 0.2-100 ng/mL, with correlation coefficients (r) of 0.995 1-0.999 9. The limits of detection (LODs) and quantification (LOQs) were 0.01-0.15 ng/mL and 0.02-0.47 ng/mL, respectively. At three spiked levels of low, medium and high, the recoveries of the 26 PFASs ranged from 80.1% to 119.5%, and the relative standard deviations (RSDs) ranged from 0.5% to 11.9%. This method has the advantages of high sensitivity, good accuracy, simple operation, fast extraction speed, low reagent consumption and small sample volume required. It is suitable for large-scale population biological monitoring and provides a scientific method support for accurately assessing the exposure of PFASs in the human body and its potential health risks.