DeepAtlas:一个有效的流形学习工具。

ArXiv Pub Date : 2025-08-26
Serena Hughes, Timothy Hamilton, Tom Kolokotrones, Eric J Deeds
{"title":"DeepAtlas:一个有效的流形学习工具。","authors":"Serena Hughes, Timothy Hamilton, Tom Kolokotrones, Eric J Deeds","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Manifold learning builds on the \"manifold hypothesis,\" which posits that data in high-dimensional datasets are drawn from lower-dimensional manifolds. Current tools generate global embeddings of data, rather than the local maps used to define manifolds mathematically. These tools also cannot assess whether the manifold hypothesis holds true for a dataset. Here, we describe DeepAtlas, an algorithm that generates lower-dimensional representations of the data's local neighborhoods, then trains deep neural networks that map between these local embeddings and the original data. Topological distortion is used to determine whether a dataset is drawn from a manifold and, if so, its dimensionality. Application to test datasets indicates that DeepAtlas can successfully learn manifold structures. Interestingly, many real datasets, including single-cell RNA-sequencing, do not conform to the manifold hypothesis. In cases where data is drawn from a manifold, DeepAtlas builds a model that can be used generatively and promises to allow the application of powerful tools from differential geometry to a variety of datasets.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407675/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepAtlas: a tool for effective manifold learning.\",\"authors\":\"Serena Hughes, Timothy Hamilton, Tom Kolokotrones, Eric J Deeds\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Manifold learning builds on the \\\"manifold hypothesis,\\\" which posits that data in high-dimensional datasets are drawn from lower-dimensional manifolds. Current tools generate global embeddings of data, rather than the local maps used to define manifolds mathematically. These tools also cannot assess whether the manifold hypothesis holds true for a dataset. Here, we describe DeepAtlas, an algorithm that generates lower-dimensional representations of the data's local neighborhoods, then trains deep neural networks that map between these local embeddings and the original data. Topological distortion is used to determine whether a dataset is drawn from a manifold and, if so, its dimensionality. Application to test datasets indicates that DeepAtlas can successfully learn manifold structures. Interestingly, many real datasets, including single-cell RNA-sequencing, do not conform to the manifold hypothesis. In cases where data is drawn from a manifold, DeepAtlas builds a model that can be used generatively and promises to allow the application of powerful tools from differential geometry to a variety of datasets.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流形学习建立在“流形假设”的基础上,它假设高维数据集中的数据是从低维流形中提取的。当前的工具生成数据的全局嵌入,而不是用于在数学上定义流形的局部映射。这些工具也不能评估流形假设是否对数据集成立。在这里,我们描述了DeepAtlas,这是一种算法,它生成数据局部邻域的低维表示,然后训练在这些局部嵌入和原始数据之间映射的深度神经网络。拓扑扭曲用于确定数据集是否从流形中绘制,如果是,则确定其维度。在测试数据集上的应用表明,DeepAtlas可以成功地学习流形结构。有趣的是,许多真实的数据集,包括单细胞rna测序,并不符合流形假说。在从流形中提取数据的情况下,DeepAtlas建立了一个可以生成的模型,并承诺允许从微分几何到各种数据集的强大工具的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepAtlas: a tool for effective manifold learning.

Manifold learning builds on the "manifold hypothesis," which posits that data in high-dimensional datasets are drawn from lower-dimensional manifolds. Current tools generate global embeddings of data, rather than the local maps used to define manifolds mathematically. These tools also cannot assess whether the manifold hypothesis holds true for a dataset. Here, we describe DeepAtlas, an algorithm that generates lower-dimensional representations of the data's local neighborhoods, then trains deep neural networks that map between these local embeddings and the original data. Topological distortion is used to determine whether a dataset is drawn from a manifold and, if so, its dimensionality. Application to test datasets indicates that DeepAtlas can successfully learn manifold structures. Interestingly, many real datasets, including single-cell RNA-sequencing, do not conform to the manifold hypothesis. In cases where data is drawn from a manifold, DeepAtlas builds a model that can be used generatively and promises to allow the application of powerful tools from differential geometry to a variety of datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信