Martin J Falk, Leon Zhou, Yoshiya J Matsubara, Kabir Husain, Jack W Szostak, Arvind Murugan
{"title":"集体编码信息中错误的抑制。","authors":"Martin J Falk, Leon Zhou, Yoshiya J Matsubara, Kabir Husain, Jack W Szostak, Arvind Murugan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Modern life largely transmits genetic information from mother to daughter through the duplication of single physically intact molecules that encode information. However, copying an extended molecule requires complex copying machinery and high fidelity that scales with the genome size to avoid the error catastrophe. Here, we explore these fidelity requirements in an alternative architecture, the virtual circular genome, in which no one physical molecule encodes the full genetic information. Instead, information is encoded and transmitted in a collective of overlapping and interacting segments. Using a model experimental system of a complex mixture of DNA oligomers that can partly anneal and extend off each other, we find that mutant oligomers are suppressed relative to a model without collective encoding. Through simulations and theory, we show that this suppression of mutants can be explained by competition for productive binding partners. As a consequence, information can be propagated robustly in a virtual circular genome even at mutation rates expected under prebiotic conditions.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407629/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of errors in collectively coded information.\",\"authors\":\"Martin J Falk, Leon Zhou, Yoshiya J Matsubara, Kabir Husain, Jack W Szostak, Arvind Murugan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modern life largely transmits genetic information from mother to daughter through the duplication of single physically intact molecules that encode information. However, copying an extended molecule requires complex copying machinery and high fidelity that scales with the genome size to avoid the error catastrophe. Here, we explore these fidelity requirements in an alternative architecture, the virtual circular genome, in which no one physical molecule encodes the full genetic information. Instead, information is encoded and transmitted in a collective of overlapping and interacting segments. Using a model experimental system of a complex mixture of DNA oligomers that can partly anneal and extend off each other, we find that mutant oligomers are suppressed relative to a model without collective encoding. Through simulations and theory, we show that this suppression of mutants can be explained by competition for productive binding partners. As a consequence, information can be propagated robustly in a virtual circular genome even at mutation rates expected under prebiotic conditions.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407629/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Suppression of errors in collectively coded information.
Modern life largely transmits genetic information from mother to daughter through the duplication of single physically intact molecules that encode information. However, copying an extended molecule requires complex copying machinery and high fidelity that scales with the genome size to avoid the error catastrophe. Here, we explore these fidelity requirements in an alternative architecture, the virtual circular genome, in which no one physical molecule encodes the full genetic information. Instead, information is encoded and transmitted in a collective of overlapping and interacting segments. Using a model experimental system of a complex mixture of DNA oligomers that can partly anneal and extend off each other, we find that mutant oligomers are suppressed relative to a model without collective encoding. Through simulations and theory, we show that this suppression of mutants can be explained by competition for productive binding partners. As a consequence, information can be propagated robustly in a virtual circular genome even at mutation rates expected under prebiotic conditions.