Disco:空间转录组学数据完成的扩散模型。

Ziheng Duan, Xi Li, Zhuoyang Zhang, James Song, Jing Zhang
{"title":"Disco:空间转录组学数据完成的扩散模型。","authors":"Ziheng Duan, Xi Li, Zhuoyang Zhang, James Song, Jing Zhang","doi":"10.1109/icip55913.2025.11084277","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial transcriptomics enables the study of gene expression within the spatial context of tissues, offering valuable insights into tissue organization and function. However, technical limitations can result in large missing regions of data, which hinder accurate downstream analyses and biological interpretation. To address these challenges, we propose <i>DISCO</i> (<i>DI</i>ffusion model for <i>S</i>patial transcriptomics data <i>CO</i>mpletion), a framework with three key features. First, DISCO employs a graph neural network-based region encoder to integrate spatial and gene expression information from observed regions, generating latent representations that guide the prediction of missing regions. Second, it uses two diffusion modules: a position diffusion module to predict the spatial layout of missing regions, and a gene expression diffusion module to generate gene expression profiles conditioned on the predicted coordinates. Third, DISCO incorporates neighboring region information during inference to guide the denoising process, ensuring smooth transitions and biologically coherent results. We validate DISCO across multiple sequencing platforms, species, and datasets, demonstrating its effectiveness in reconstructing large missing regions. DISCO is implemented as open-source software, providing researchers with a powerful tool to enhance data completeness and advance spatial transcriptomics research.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2025 ","pages":"19-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407492/pdf/","citationCount":"0","resultStr":"{\"title\":\"DISCO: A DIFFUSION MODEL FOR SPATIAL TRANSCRIPTOMICS DATA COMPLETION.\",\"authors\":\"Ziheng Duan, Xi Li, Zhuoyang Zhang, James Song, Jing Zhang\",\"doi\":\"10.1109/icip55913.2025.11084277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spatial transcriptomics enables the study of gene expression within the spatial context of tissues, offering valuable insights into tissue organization and function. However, technical limitations can result in large missing regions of data, which hinder accurate downstream analyses and biological interpretation. To address these challenges, we propose <i>DISCO</i> (<i>DI</i>ffusion model for <i>S</i>patial transcriptomics data <i>CO</i>mpletion), a framework with three key features. First, DISCO employs a graph neural network-based region encoder to integrate spatial and gene expression information from observed regions, generating latent representations that guide the prediction of missing regions. Second, it uses two diffusion modules: a position diffusion module to predict the spatial layout of missing regions, and a gene expression diffusion module to generate gene expression profiles conditioned on the predicted coordinates. Third, DISCO incorporates neighboring region information during inference to guide the denoising process, ensuring smooth transitions and biologically coherent results. We validate DISCO across multiple sequencing platforms, species, and datasets, demonstrating its effectiveness in reconstructing large missing regions. DISCO is implemented as open-source software, providing researchers with a powerful tool to enhance data completeness and advance spatial transcriptomics research.</p>\",\"PeriodicalId\":74572,\"journal\":{\"name\":\"Proceedings. International Conference on Image Processing\",\"volume\":\"2025 \",\"pages\":\"19-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407492/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icip55913.2025.11084277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icip55913.2025.11084277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学能够在组织的空间背景下研究基因表达,为组织组织和功能提供有价值的见解。然而,技术限制可能导致大量数据缺失区域,这阻碍了准确的下游分析和生物学解释。为了应对这些挑战,我们提出了DISCO(空间转录组学数据完成扩散模型),这是一个具有三个关键特征的框架。首先,DISCO使用基于图神经网络的区域编码器来整合来自观察区域的空间和基因表达信息,生成指导缺失区域预测的潜在表示。其次,它使用两个扩散模块:一个位置扩散模块预测缺失区域的空间布局,一个基因表达扩散模块根据预测的坐标生成基因表达谱。第三,DISCO在推理过程中结合相邻区域信息来指导去噪过程,确保平滑过渡和生物一致性结果。我们在多个测序平台、物种和数据集上验证了DISCO,证明了它在重建大型缺失区域方面的有效性。DISCO作为开源软件实现,为研究人员提供了增强数据完整性和推进空间转录组学研究的强大工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DISCO: A DIFFUSION MODEL FOR SPATIAL TRANSCRIPTOMICS DATA COMPLETION.

Spatial transcriptomics enables the study of gene expression within the spatial context of tissues, offering valuable insights into tissue organization and function. However, technical limitations can result in large missing regions of data, which hinder accurate downstream analyses and biological interpretation. To address these challenges, we propose DISCO (DIffusion model for Spatial transcriptomics data COmpletion), a framework with three key features. First, DISCO employs a graph neural network-based region encoder to integrate spatial and gene expression information from observed regions, generating latent representations that guide the prediction of missing regions. Second, it uses two diffusion modules: a position diffusion module to predict the spatial layout of missing regions, and a gene expression diffusion module to generate gene expression profiles conditioned on the predicted coordinates. Third, DISCO incorporates neighboring region information during inference to guide the denoising process, ensuring smooth transitions and biologically coherent results. We validate DISCO across multiple sequencing platforms, species, and datasets, demonstrating its effectiveness in reconstructing large missing regions. DISCO is implemented as open-source software, providing researchers with a powerful tool to enhance data completeness and advance spatial transcriptomics research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信