{"title":"血小板COX和LOX酶通过RhoA信号调节淀粉样蛋白β分泌:对神经退行性疾病的影响","authors":"A. Trostchansky , M. Alarcón","doi":"10.1016/j.freeradbiomed.2025.08.060","DOIUrl":null,"url":null,"abstract":"<div><div>Arachidonic acid metabolism through cyclooxygenase (COX) and lipoxygenase (LOX) pathways is fundamental to inflammation, vascular homeostasis, and neuronal signaling. Here, we investigated the roles of platelet-expressed COX (PTGS1) and LOX (ALOX12) isoforms in amyloid-β (Aβ) secretion, a process implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Using an integrative approach combining bioinformatic protein–protein interaction mapping, pathway enrichment analysis, and experimental validation, we identified extensive networks linking PTGS and ALOX isoforms to cytoskeletal remodeling, mitochondrial function, and vesicle trafficking. Functional enrichment pointed to key roles for PTGS1 and ALOX12 in platelet activation and secretory processes. In vitro studies demonstrated that stimulation of human platelets with TRAP-6 triggered a robust increase in Aβ40 secretion, which was significantly attenuated by COX inhibition or blockade of RhoA, a critical regulator of cytoskeletal dynamics. These findings suggest that platelet-derived Aβ release is driven by COX/LOX-dependent signaling via RhoA. While our results support a COX/LOX-RhoA axis, we recognize that causality remains to be fully established, and the role of ALOX12 requires further experimental validation. Given the vascular deposition of Aβ40 in CAA, our results position platelets as important peripheral contributors to neurovascular amyloidosis. This study should therefore be viewed as hypothesis-generating, underscoring the therapeutic potential of targeting platelet signaling pathways to mitigate Aβ-driven vascular pathology.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"240 ","pages":"Pages 641-649"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platelet COX and LOX enzymes orchestrate amyloid-β secretion via RhoA signaling: Implications for neurodegenerative diseases\",\"authors\":\"A. Trostchansky , M. Alarcón\",\"doi\":\"10.1016/j.freeradbiomed.2025.08.060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Arachidonic acid metabolism through cyclooxygenase (COX) and lipoxygenase (LOX) pathways is fundamental to inflammation, vascular homeostasis, and neuronal signaling. Here, we investigated the roles of platelet-expressed COX (PTGS1) and LOX (ALOX12) isoforms in amyloid-β (Aβ) secretion, a process implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Using an integrative approach combining bioinformatic protein–protein interaction mapping, pathway enrichment analysis, and experimental validation, we identified extensive networks linking PTGS and ALOX isoforms to cytoskeletal remodeling, mitochondrial function, and vesicle trafficking. Functional enrichment pointed to key roles for PTGS1 and ALOX12 in platelet activation and secretory processes. In vitro studies demonstrated that stimulation of human platelets with TRAP-6 triggered a robust increase in Aβ40 secretion, which was significantly attenuated by COX inhibition or blockade of RhoA, a critical regulator of cytoskeletal dynamics. These findings suggest that platelet-derived Aβ release is driven by COX/LOX-dependent signaling via RhoA. While our results support a COX/LOX-RhoA axis, we recognize that causality remains to be fully established, and the role of ALOX12 requires further experimental validation. Given the vascular deposition of Aβ40 in CAA, our results position platelets as important peripheral contributors to neurovascular amyloidosis. This study should therefore be viewed as hypothesis-generating, underscoring the therapeutic potential of targeting platelet signaling pathways to mitigate Aβ-driven vascular pathology.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\"240 \",\"pages\":\"Pages 641-649\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584925009475\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925009475","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Platelet COX and LOX enzymes orchestrate amyloid-β secretion via RhoA signaling: Implications for neurodegenerative diseases
Arachidonic acid metabolism through cyclooxygenase (COX) and lipoxygenase (LOX) pathways is fundamental to inflammation, vascular homeostasis, and neuronal signaling. Here, we investigated the roles of platelet-expressed COX (PTGS1) and LOX (ALOX12) isoforms in amyloid-β (Aβ) secretion, a process implicated in the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Using an integrative approach combining bioinformatic protein–protein interaction mapping, pathway enrichment analysis, and experimental validation, we identified extensive networks linking PTGS and ALOX isoforms to cytoskeletal remodeling, mitochondrial function, and vesicle trafficking. Functional enrichment pointed to key roles for PTGS1 and ALOX12 in platelet activation and secretory processes. In vitro studies demonstrated that stimulation of human platelets with TRAP-6 triggered a robust increase in Aβ40 secretion, which was significantly attenuated by COX inhibition or blockade of RhoA, a critical regulator of cytoskeletal dynamics. These findings suggest that platelet-derived Aβ release is driven by COX/LOX-dependent signaling via RhoA. While our results support a COX/LOX-RhoA axis, we recognize that causality remains to be fully established, and the role of ALOX12 requires further experimental validation. Given the vascular deposition of Aβ40 in CAA, our results position platelets as important peripheral contributors to neurovascular amyloidosis. This study should therefore be viewed as hypothesis-generating, underscoring the therapeutic potential of targeting platelet signaling pathways to mitigate Aβ-driven vascular pathology.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.