2025年利用PubChem和其他公共数据库进行虚拟筛选:最新趋势是什么?

IF 4.9 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Alberto Marbán-González, Verónica Ramírez-Cid, Alejandro Cristóbal-Ramírez, José L Medina-Franco
{"title":"2025年利用PubChem和其他公共数据库进行虚拟筛选:最新趋势是什么?","authors":"Alberto Marbán-González, Verónica Ramírez-Cid, Alejandro Cristóbal-Ramírez, José L Medina-Franco","doi":"10.1080/17460441.2025.2558161","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cheminformatics has become a cornerstone of modern drug discovery, offering the ability to efficiently manage and analyze large volumes of chemical and biological data. Publicly available databases such as PubChem, ZINC, ChEMBL, DrugBank, ChemDiv, natural product databases, among others, are essential for accessing diverse chemical structures, biological activities, and pharmacological properties.</p><p><strong>Areas covered: </strong>This review provides an overview of recent (2024-2025) trends in mining data from PubChem and other representative public databases for virtual screening. It also discusses the integration of experimental validation and computational tools in drug design and cheminformatics workflows. The article is based on literature retrieved from SciFinder.</p><p><strong>Expert opinion: </strong>Public chemical databases contain thousands to billions of compounds and various computational strategies have necessitated development to navigate this vast chemical space effectively. These include application programming interfaces, similarity searches, physicochemical filtering, and target-based selection. Such filtering strategies have enabled the extraction of focused compound subsets for evaluation through various cheminformatics tools, ultimately supporting informed decision-making in lead discovery and optimization.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-17"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting PubChem and other public databases for virtual screening in 2025: what are the latest trends?\",\"authors\":\"Alberto Marbán-González, Verónica Ramírez-Cid, Alejandro Cristóbal-Ramírez, José L Medina-Franco\",\"doi\":\"10.1080/17460441.2025.2558161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cheminformatics has become a cornerstone of modern drug discovery, offering the ability to efficiently manage and analyze large volumes of chemical and biological data. Publicly available databases such as PubChem, ZINC, ChEMBL, DrugBank, ChemDiv, natural product databases, among others, are essential for accessing diverse chemical structures, biological activities, and pharmacological properties.</p><p><strong>Areas covered: </strong>This review provides an overview of recent (2024-2025) trends in mining data from PubChem and other representative public databases for virtual screening. It also discusses the integration of experimental validation and computational tools in drug design and cheminformatics workflows. The article is based on literature retrieved from SciFinder.</p><p><strong>Expert opinion: </strong>Public chemical databases contain thousands to billions of compounds and various computational strategies have necessitated development to navigate this vast chemical space effectively. These include application programming interfaces, similarity searches, physicochemical filtering, and target-based selection. Such filtering strategies have enabled the extraction of focused compound subsets for evaluation through various cheminformatics tools, ultimately supporting informed decision-making in lead discovery and optimization.</p>\",\"PeriodicalId\":12267,\"journal\":{\"name\":\"Expert Opinion on Drug Discovery\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17460441.2025.2558161\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2025.2558161","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

化学信息学已经成为现代药物发现的基石,提供了有效管理和分析大量化学和生物数据的能力。诸如PubChem、ZINC、ChEMBL、DrugBank、ChemDIV、天然产品数据库等公开可用的数据库对于获取各种化学结构、生物活性和药理学特性至关重要。涵盖领域:本综述概述了最近(2024-2025)从PubChem和其他代表性公共数据库中挖掘数据进行虚拟筛选的趋势。它还讨论了药物设计和化学信息学工作流程中实验验证和计算工具的集成。本文基于从SciFinder检索到的文献。专家意见:公共化学数据库包含数千到数十亿种化合物,需要开发各种计算策略来有效地导航这个巨大的化学空间。其中包括应用程序编程接口、相似性搜索、物理化学过滤和基于目标的选择。这种过滤策略可以通过各种化学信息学工具提取重点化合物子集进行评估,最终支持先导物发现和优化的明智决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting PubChem and other public databases for virtual screening in 2025: what are the latest trends?

Introduction: Cheminformatics has become a cornerstone of modern drug discovery, offering the ability to efficiently manage and analyze large volumes of chemical and biological data. Publicly available databases such as PubChem, ZINC, ChEMBL, DrugBank, ChemDiv, natural product databases, among others, are essential for accessing diverse chemical structures, biological activities, and pharmacological properties.

Areas covered: This review provides an overview of recent (2024-2025) trends in mining data from PubChem and other representative public databases for virtual screening. It also discusses the integration of experimental validation and computational tools in drug design and cheminformatics workflows. The article is based on literature retrieved from SciFinder.

Expert opinion: Public chemical databases contain thousands to billions of compounds and various computational strategies have necessitated development to navigate this vast chemical space effectively. These include application programming interfaces, similarity searches, physicochemical filtering, and target-based selection. Such filtering strategies have enabled the extraction of focused compound subsets for evaluation through various cheminformatics tools, ultimately supporting informed decision-making in lead discovery and optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
1.60%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development. The Editors welcome: Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信