三维洛伦兹模型在盖-吕萨克近似下的扩展。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0288919
Caleb Monoran, Clifford Watkins, Sean Breckling
{"title":"三维洛伦兹模型在盖-吕萨克近似下的扩展。","authors":"Caleb Monoran, Clifford Watkins, Sean Breckling","doi":"10.1063/5.0288919","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we explore a class of extensions to the 3D Lorenz (3DL) system by considering an alternative incompressible natural convection model. Famously, the 3DL system is recovered when the Oberbeck-Boussinesq (OB) approximation is applied to the 2D Rayleigh-Bénard problem. The OB model is incompressible, accounting for variations in fluid density exclusively in terms of buoyancy forces, which are modeled and closed by an equation of state that is linear in temperature. Gay-Lussac (GL) approximations relax OB by not discarding fluid density from the convection terms in the fluid momentum and heat equations. This class of models has been shown to resolve non-Boussinesq effects while preserving the incompressibility assumption, as well as the linear thermal expansion model. Herein, we present a class of dynamical systems that result from approaching the Rayleigh-Bénard problem with a GL model. We include linear stability analyses, Lyapunov spectra, and bifurcation diagrams.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of the 3D Lorenz model under the Gay-Lussac approximation.\",\"authors\":\"Caleb Monoran, Clifford Watkins, Sean Breckling\",\"doi\":\"10.1063/5.0288919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we explore a class of extensions to the 3D Lorenz (3DL) system by considering an alternative incompressible natural convection model. Famously, the 3DL system is recovered when the Oberbeck-Boussinesq (OB) approximation is applied to the 2D Rayleigh-Bénard problem. The OB model is incompressible, accounting for variations in fluid density exclusively in terms of buoyancy forces, which are modeled and closed by an equation of state that is linear in temperature. Gay-Lussac (GL) approximations relax OB by not discarding fluid density from the convection terms in the fluid momentum and heat equations. This class of models has been shown to resolve non-Boussinesq effects while preserving the incompressibility assumption, as well as the linear thermal expansion model. Herein, we present a class of dynamical systems that result from approaching the Rayleigh-Bénard problem with a GL model. We include linear stability analyses, Lyapunov spectra, and bifurcation diagrams.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0288919\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0288919","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过考虑一种替代的不可压缩自然对流模型,探索了三维洛伦兹(3DL)系统的一类扩展。众所周知,当Oberbeck-Boussinesq (OB)近似应用于2D rayleigh - b纳德问题时,3DL系统可以恢复。OB模型是不可压缩的,只考虑浮力方面的流体密度变化,浮力是由温度线性的状态方程建模和封闭的。Gay-Lussac (GL)近似通过不从流体动量和热量方程的对流项中丢弃流体密度而放松了OB。这类模型已被证明可以解决非布辛尼斯克效应,同时保留不可压缩性假设,以及线性热膨胀模型。本文给出了用GL模型逼近rayleigh - bassanard问题的一类动力系统。我们包括线性稳定性分析,李雅普诺夫谱,和分岔图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extension of the 3D Lorenz model under the Gay-Lussac approximation.

In this work, we explore a class of extensions to the 3D Lorenz (3DL) system by considering an alternative incompressible natural convection model. Famously, the 3DL system is recovered when the Oberbeck-Boussinesq (OB) approximation is applied to the 2D Rayleigh-Bénard problem. The OB model is incompressible, accounting for variations in fluid density exclusively in terms of buoyancy forces, which are modeled and closed by an equation of state that is linear in temperature. Gay-Lussac (GL) approximations relax OB by not discarding fluid density from the convection terms in the fluid momentum and heat equations. This class of models has been shown to resolve non-Boussinesq effects while preserving the incompressibility assumption, as well as the linear thermal expansion model. Herein, we present a class of dynamical systems that result from approaching the Rayleigh-Bénard problem with a GL model. We include linear stability analyses, Lyapunov spectra, and bifurcation diagrams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信