基于深度学习方法的分子系统窄逃逸问题影响因素及最可能过渡途径分析

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0288558
Jiangyan Liu, Ming Yi, Ting Gao, Xiaoli Chen
{"title":"基于深度学习方法的分子系统窄逃逸问题影响因素及最可能过渡途径分析","authors":"Jiangyan Liu, Ming Yi, Ting Gao, Xiaoli Chen","doi":"10.1063/5.0288558","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs physics-informed neural networks (PINNs) to investigate the narrow escape problem in irregular domains, aiming to understand how key parameters influence molecular escape behavior and to analyze the most probable transition pathway of molecules. We focus on two critical metrics: mean exit time and escape probability, characterizing escape behavior in stochastic systems. Using PINNs, we effectively address the domain's complexities and examine the effects of parameters such as diffusion coefficient, angular velocity, annular area, and absorption domain size on mean exit time and escape probability. Moreover, by computing the most probable transition pathway, we further uncovered the underlying mechanisms that govern molecular motion in complex environments. An interesting observation was that increasing the diffusion coefficient expanded the high-probability escape region but decreased the overall escape probability. The results provide valuable insights for optimizing escape efficiency in practical applications and highlight the potential of PINNs for studying complex diffusion problems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of influencing factors and the most probable transition pathway in the narrow escape problem for molecular systems based on deep learning method.\",\"authors\":\"Jiangyan Liu, Ming Yi, Ting Gao, Xiaoli Chen\",\"doi\":\"10.1063/5.0288558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study employs physics-informed neural networks (PINNs) to investigate the narrow escape problem in irregular domains, aiming to understand how key parameters influence molecular escape behavior and to analyze the most probable transition pathway of molecules. We focus on two critical metrics: mean exit time and escape probability, characterizing escape behavior in stochastic systems. Using PINNs, we effectively address the domain's complexities and examine the effects of parameters such as diffusion coefficient, angular velocity, annular area, and absorption domain size on mean exit time and escape probability. Moreover, by computing the most probable transition pathway, we further uncovered the underlying mechanisms that govern molecular motion in complex environments. An interesting observation was that increasing the diffusion coefficient expanded the high-probability escape region but decreased the overall escape probability. The results provide valuable insights for optimizing escape efficiency in practical applications and highlight the potential of PINNs for studying complex diffusion problems.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0288558\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0288558","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用物理信息神经网络(PINNs)研究不规则区域的窄逃逸问题,旨在了解关键参数如何影响分子的逃逸行为,并分析分子最可能的转移途径。我们关注两个关键指标:平均逃生时间和逃生概率,以表征随机系统的逃生行为。使用pinn,我们有效地解决了域的复杂性,并研究了扩散系数、角速度、环形面积和吸收域大小等参数对平均退出时间和逃逸概率的影响。此外,通过计算最可能的过渡途径,我们进一步揭示了在复杂环境中控制分子运动的潜在机制。一个有趣的观察结果是,增大扩散系数扩大了高概率逃逸区域,但降低了总体逃逸概率。这些结果为实际应用中优化逃逸效率提供了有价值的见解,并突出了pin在研究复杂扩散问题方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of influencing factors and the most probable transition pathway in the narrow escape problem for molecular systems based on deep learning method.

This study employs physics-informed neural networks (PINNs) to investigate the narrow escape problem in irregular domains, aiming to understand how key parameters influence molecular escape behavior and to analyze the most probable transition pathway of molecules. We focus on two critical metrics: mean exit time and escape probability, characterizing escape behavior in stochastic systems. Using PINNs, we effectively address the domain's complexities and examine the effects of parameters such as diffusion coefficient, angular velocity, annular area, and absorption domain size on mean exit time and escape probability. Moreover, by computing the most probable transition pathway, we further uncovered the underlying mechanisms that govern molecular motion in complex environments. An interesting observation was that increasing the diffusion coefficient expanded the high-probability escape region but decreased the overall escape probability. The results provide valuable insights for optimizing escape efficiency in practical applications and highlight the potential of PINNs for studying complex diffusion problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信