具有随机能量更新的布朗运动。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0285588
Ion Santra, Kristian Stølevik Olsen
{"title":"具有随机能量更新的布朗运动。","authors":"Ion Santra, Kristian Stølevik Olsen","doi":"10.1063/5.0285588","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the impact of intermittent energy injections on a Brownian particle, modeled as stochastic renewals of its kinetic energy to a fixed value. Between renewals, the particle follows standard underdamped Langevin dynamics. For energy renewals occurring at a constant rate, we find non-Boltzmannian energy distributions that undergo a shape transition driven by the competition between the velocity relaxation timescale and the renewal timescale. In the limit of rapid renewals, the dynamics mimics one-dimensional run-and-tumble motion, while at finite renewal rates, the effective diffusion coefficient exhibits non-monotonic behavior. To quantify the system's departure from equilibrium, we derive a modified fluctuation-response relation and demonstrate the absence of a consistent effective temperature. The dissipation is characterized by deviations from equilibrium-like response, captured via the Harada-Sasa relation. Finally, we extend the analysis to non-Poissonian renewal processes and introduce a dimensionless conversion coefficient that quantifies the thermodynamic cost of diffusion.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brownian motion with stochastic energy renewals.\",\"authors\":\"Ion Santra, Kristian Stølevik Olsen\",\"doi\":\"10.1063/5.0285588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigate the impact of intermittent energy injections on a Brownian particle, modeled as stochastic renewals of its kinetic energy to a fixed value. Between renewals, the particle follows standard underdamped Langevin dynamics. For energy renewals occurring at a constant rate, we find non-Boltzmannian energy distributions that undergo a shape transition driven by the competition between the velocity relaxation timescale and the renewal timescale. In the limit of rapid renewals, the dynamics mimics one-dimensional run-and-tumble motion, while at finite renewal rates, the effective diffusion coefficient exhibits non-monotonic behavior. To quantify the system's departure from equilibrium, we derive a modified fluctuation-response relation and demonstrate the absence of a consistent effective temperature. The dissipation is characterized by deviations from equilibrium-like response, captured via the Harada-Sasa relation. Finally, we extend the analysis to non-Poissonian renewal processes and introduce a dimensionless conversion coefficient that quantifies the thermodynamic cost of diffusion.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0285588\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0285588","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了间歇性能量注入对布朗粒子的影响,模型为其动能的随机更新到一个固定值。在更新之间,粒子遵循标准的欠阻尼朗格万动力学。对于以恒定速率发生的能量更新,我们发现非玻尔兹曼能量分布经历了由速度松弛时间尺度和更新时间尺度之间的竞争驱动的形状转变。在快速更新的极限下,动力学模拟一维的奔跑和翻滚运动,而在有限更新速率下,有效扩散系数表现出非单调行为。为了量化系统偏离平衡,我们推导了一个修正的波动-响应关系,并证明了没有一致的有效温度。耗散的特征是偏离类平衡响应,通过Harada-Sasa关系捕获。最后,我们将分析扩展到非泊松更新过程,并引入了一个量化扩散热力学代价的无因次转换系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brownian motion with stochastic energy renewals.

We investigate the impact of intermittent energy injections on a Brownian particle, modeled as stochastic renewals of its kinetic energy to a fixed value. Between renewals, the particle follows standard underdamped Langevin dynamics. For energy renewals occurring at a constant rate, we find non-Boltzmannian energy distributions that undergo a shape transition driven by the competition between the velocity relaxation timescale and the renewal timescale. In the limit of rapid renewals, the dynamics mimics one-dimensional run-and-tumble motion, while at finite renewal rates, the effective diffusion coefficient exhibits non-monotonic behavior. To quantify the system's departure from equilibrium, we derive a modified fluctuation-response relation and demonstrate the absence of a consistent effective temperature. The dissipation is characterized by deviations from equilibrium-like response, captured via the Harada-Sasa relation. Finally, we extend the analysis to non-Poissonian renewal processes and introduce a dimensionless conversion coefficient that quantifies the thermodynamic cost of diffusion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信