同伦油藏计算:利用混沌进行计算。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0273406
Jaesung Choi, Pilwon Kim
{"title":"同伦油藏计算:利用混沌进行计算。","authors":"Jaesung Choi, Pilwon Kim","doi":"10.1063/5.0273406","DOIUrl":null,"url":null,"abstract":"<p><p>Reservoir computing (RC) has traditionally relied on tuning systems toward the edge of chaos to optimize their computational capability. In contrast, we propose a novel method that starts from a fully chaotic system and systematically tames it into a trainable reservoir using homotopy. Our approach constructs adaptive reservoirs whose internal dynamics evolve in real time with the input, yielding a new class of computational models: Homotopy Reservoir Computing (Homotopy RC). We demonstrate the effectiveness of this method across several canonical chaotic systems-including coupled Lorenz networks, the Lorenz-96 model, and the Kuramoto-Sivashinsky system-showing high performance in computational tasks. Furthermore, we explore how the complexity of the underlying chaotic system correlates with computational performance, revealing that both moderate coupling and node heterogeneity enhance RC capabilities. This work establishes a general and adaptive framework for utilizing chaotic dynamics in real-time computation.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopy reservoir computing: Harnessing chaos for computation.\",\"authors\":\"Jaesung Choi, Pilwon Kim\",\"doi\":\"10.1063/5.0273406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reservoir computing (RC) has traditionally relied on tuning systems toward the edge of chaos to optimize their computational capability. In contrast, we propose a novel method that starts from a fully chaotic system and systematically tames it into a trainable reservoir using homotopy. Our approach constructs adaptive reservoirs whose internal dynamics evolve in real time with the input, yielding a new class of computational models: Homotopy Reservoir Computing (Homotopy RC). We demonstrate the effectiveness of this method across several canonical chaotic systems-including coupled Lorenz networks, the Lorenz-96 model, and the Kuramoto-Sivashinsky system-showing high performance in computational tasks. Furthermore, we explore how the complexity of the underlying chaotic system correlates with computational performance, revealing that both moderate coupling and node heterogeneity enhance RC capabilities. This work establishes a general and adaptive framework for utilizing chaotic dynamics in real-time computation.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0273406\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0273406","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

水库计算(RC)传统上依赖于向混沌边缘调整系统来优化其计算能力。相反,我们提出了一种新的方法,从一个完全混沌系统开始,利用同伦将其系统地驯服为一个可训练的水库。我们的方法构建了自适应油藏,其内部动态随输入实时演化,产生了一类新的计算模型:同伦油藏计算(Homotopy Reservoir Computing,简称RC)。我们证明了这种方法在几个典型混沌系统中的有效性,包括耦合洛伦兹网络、洛伦兹-96模型和Kuramoto-Sivashinsky系统,在计算任务中表现出高性能。此外,我们探讨了底层混沌系统的复杂性如何与计算性能相关,揭示了适度耦合和节点异质性都增强了RC能力。本文为混沌动力学在实时计算中的应用建立了一个通用的、自适应的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy reservoir computing: Harnessing chaos for computation.

Reservoir computing (RC) has traditionally relied on tuning systems toward the edge of chaos to optimize their computational capability. In contrast, we propose a novel method that starts from a fully chaotic system and systematically tames it into a trainable reservoir using homotopy. Our approach constructs adaptive reservoirs whose internal dynamics evolve in real time with the input, yielding a new class of computational models: Homotopy Reservoir Computing (Homotopy RC). We demonstrate the effectiveness of this method across several canonical chaotic systems-including coupled Lorenz networks, the Lorenz-96 model, and the Kuramoto-Sivashinsky system-showing high performance in computational tasks. Furthermore, we explore how the complexity of the underlying chaotic system correlates with computational performance, revealing that both moderate coupling and node heterogeneity enhance RC capabilities. This work establishes a general and adaptive framework for utilizing chaotic dynamics in real-time computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信