genestar:细胞色素P450主要基因家族基因型到星型等位基因转换的R包。

IF 5.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Alex J Coulter, Megana Thamilselvan, James L Kennedy, Clement C Zai, Arun K Tiwari
{"title":"genestar:细胞色素P450主要基因家族基因型到星型等位基因转换的R包。","authors":"Alex J Coulter, Megana Thamilselvan, James L Kennedy, Clement C Zai, Arun K Tiwari","doi":"10.1002/cpt.70059","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenomics enables the personalization of drug therapy by linking genetic variations to differences in drug metabolism, efficacy, and risk of adverse reactions. Genetic polymorphisms within cytochrome P450 (CYP) genes significantly affect enzyme activity, influencing drug plasma levels, responses, and safety. Central to this process is accurate genotype-to-phenotype translation, especially for the CYP enzyme family, which metabolizes 70-80% of clinically used drugs. To address this, we have developed GenoStaR, an R package that converts genotypes into star alleles and predicts the associated metabolizer status for major cytochrome P450 genes-CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5. GenoStaR assigns star alleles using single-nucleotide polymorphisms, insertion-deletion variants, and structural variants. Given genotype data, GenoStaR uses comprehensive allele definition tables to determine diplotypes, activity scores, and predicted metabolizer status. The tool accounts for complex scenarios, including CYP2D6 copy number variations, using a tiered matching strategy and structural variant detection. We evaluated GenoStaR using two datasets. The first from the Centre for Addiction and Mental Health Individualized Medicine: Pharmacogenetics Assessment and Clinical Treatment (IMPACT) study (n = 8,287), which included genotyping data, along with star allele information from a commercial pharmacogenetic test. The second, the Toronto Schizophrenia sample (n = 188), with in-house genotype data and manually validated star alleles. GenoStaR achieved 100% concordance in diplotype calls across both datasets. GenoStaR offers a reliable, efficient, and accurate solution for converting genotypes into star alleles and predicting CYP-related metabolizer status. Its performance on a large validation dataset highlights its potential to enhance pharmacogenomic testing in clinical settings.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GenoStaR: An R Package for Genotype to Star Allele Conversion for Major Cytochrome P450 Family of Genes.\",\"authors\":\"Alex J Coulter, Megana Thamilselvan, James L Kennedy, Clement C Zai, Arun K Tiwari\",\"doi\":\"10.1002/cpt.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacogenomics enables the personalization of drug therapy by linking genetic variations to differences in drug metabolism, efficacy, and risk of adverse reactions. Genetic polymorphisms within cytochrome P450 (CYP) genes significantly affect enzyme activity, influencing drug plasma levels, responses, and safety. Central to this process is accurate genotype-to-phenotype translation, especially for the CYP enzyme family, which metabolizes 70-80% of clinically used drugs. To address this, we have developed GenoStaR, an R package that converts genotypes into star alleles and predicts the associated metabolizer status for major cytochrome P450 genes-CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5. GenoStaR assigns star alleles using single-nucleotide polymorphisms, insertion-deletion variants, and structural variants. Given genotype data, GenoStaR uses comprehensive allele definition tables to determine diplotypes, activity scores, and predicted metabolizer status. The tool accounts for complex scenarios, including CYP2D6 copy number variations, using a tiered matching strategy and structural variant detection. We evaluated GenoStaR using two datasets. The first from the Centre for Addiction and Mental Health Individualized Medicine: Pharmacogenetics Assessment and Clinical Treatment (IMPACT) study (n = 8,287), which included genotyping data, along with star allele information from a commercial pharmacogenetic test. The second, the Toronto Schizophrenia sample (n = 188), with in-house genotype data and manually validated star alleles. GenoStaR achieved 100% concordance in diplotype calls across both datasets. GenoStaR offers a reliable, efficient, and accurate solution for converting genotypes into star alleles and predicting CYP-related metabolizer status. Its performance on a large validation dataset highlights its potential to enhance pharmacogenomic testing in clinical settings.</p>\",\"PeriodicalId\":153,\"journal\":{\"name\":\"Clinical Pharmacology & Therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Pharmacology & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cpt.70059\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.70059","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

药物基因组学通过将基因变异与药物代谢、疗效和不良反应风险的差异联系起来,实现了药物治疗的个性化。细胞色素P450 (CYP)基因的遗传多态性显著影响酶活性,影响药物血浆水平、反应和安全性。这个过程的核心是准确的基因型到表型的翻译,特别是对于代谢70-80%临床使用药物的CYP酶家族。为了解决这个问题,我们开发了GenoStaR,这是一个R包,可以将基因型转化为星型等位基因,并预测主要细胞色素P450基因(cyp1a2、CYP2B6、CYP2C9、CYP2C19、CYP2D6、CYP3A4和CYP3A5)的相关代谢状态。GenoStaR使用单核苷酸多态性、插入-删除变异和结构变异来分配星型等位基因。给定基因型数据,GenoStaR使用全面的等位基因定义表来确定双倍型、活动评分和预测代谢状态。该工具考虑了复杂的场景,包括CYP2D6拷贝数变化,使用分层匹配策略和结构变异检测。我们使用两个数据集评估GenoStaR。第一项研究来自成瘾和心理健康中心的个体化医学:药物遗传学评估和临床治疗(IMPACT)研究(n = 8,287),其中包括基因分型数据,以及来自商业药物遗传学测试的明星等位基因信息。第二,多伦多精神分裂症样本(n = 188),具有内部基因型数据和手动验证的星型等位基因。GenoStaR在两个数据集的双倍型呼叫中实现了100%的一致性。GenoStaR为将基因型转化为星型等位基因和预测cyp1相关代谢状态提供了可靠、高效和准确的解决方案。它在大型验证数据集上的表现突出了其在临床环境中加强药物基因组学测试的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GenoStaR: An R Package for Genotype to Star Allele Conversion for Major Cytochrome P450 Family of Genes.

Pharmacogenomics enables the personalization of drug therapy by linking genetic variations to differences in drug metabolism, efficacy, and risk of adverse reactions. Genetic polymorphisms within cytochrome P450 (CYP) genes significantly affect enzyme activity, influencing drug plasma levels, responses, and safety. Central to this process is accurate genotype-to-phenotype translation, especially for the CYP enzyme family, which metabolizes 70-80% of clinically used drugs. To address this, we have developed GenoStaR, an R package that converts genotypes into star alleles and predicts the associated metabolizer status for major cytochrome P450 genes-CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5. GenoStaR assigns star alleles using single-nucleotide polymorphisms, insertion-deletion variants, and structural variants. Given genotype data, GenoStaR uses comprehensive allele definition tables to determine diplotypes, activity scores, and predicted metabolizer status. The tool accounts for complex scenarios, including CYP2D6 copy number variations, using a tiered matching strategy and structural variant detection. We evaluated GenoStaR using two datasets. The first from the Centre for Addiction and Mental Health Individualized Medicine: Pharmacogenetics Assessment and Clinical Treatment (IMPACT) study (n = 8,287), which included genotyping data, along with star allele information from a commercial pharmacogenetic test. The second, the Toronto Schizophrenia sample (n = 188), with in-house genotype data and manually validated star alleles. GenoStaR achieved 100% concordance in diplotype calls across both datasets. GenoStaR offers a reliable, efficient, and accurate solution for converting genotypes into star alleles and predicting CYP-related metabolizer status. Its performance on a large validation dataset highlights its potential to enhance pharmacogenomic testing in clinical settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信