Xiaojun Wei, Ran Xia, Hao Wu, Xinran Guo, Zihan Tan, Yingying Wei, Xuhui He
{"title":"基于模态信息和颤振裕度的桥梁颤振预测与主动控制","authors":"Xiaojun Wei, Ran Xia, Hao Wu, Xinran Guo, Zihan Tan, Yingying Wei, Xuhui He","doi":"10.1155/stc/4905453","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a flutter prediction method based on flutter margins is proposed for streamlined bridges whose aeroelastic behavior can be well approximated by a two-degree-of-freedom (2-DoF) flutter model. The method enables prediction of the flutter boundary by extrapolating a curve of flutter margin versus wind speed, constructed using flutter margins at several subcritical wind speeds. In addition, an <span></span><math></math>-optimal flutter active control method based on measured receptances and flutter margins is proposed. It enables assignment of the flutter boundary to a prescribed wind speed value or range for each considered angle of attack (AoA), while simultaneously minimizing vibration responses at subcritical wind speeds, using a single controller with optimal control effort. Hence, the designed controller is robust to the variations of wind speed and AoA. The proposed flutter prediction and control methods require only a small number of systems’ modal parameters or open-loop receptances at several subcritical wind speeds. The proposed flutter prediction method typically requires fewer system modal parameters than existing methods that track the variation of damping ratio against wind speed. The proposed flutter suppression method avoids some modeling errors associated with conventional system matrix-based methods. The working of the proposed flutter prediction and control methods are validated using wind tunnel tests and CFD simulations, respectively.</p>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4905453","citationCount":"0","resultStr":"{\"title\":\"Bridge Flutter Prediction and Active Control Using Modal Information and Flutter Margins\",\"authors\":\"Xiaojun Wei, Ran Xia, Hao Wu, Xinran Guo, Zihan Tan, Yingying Wei, Xuhui He\",\"doi\":\"10.1155/stc/4905453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a flutter prediction method based on flutter margins is proposed for streamlined bridges whose aeroelastic behavior can be well approximated by a two-degree-of-freedom (2-DoF) flutter model. The method enables prediction of the flutter boundary by extrapolating a curve of flutter margin versus wind speed, constructed using flutter margins at several subcritical wind speeds. In addition, an <span></span><math></math>-optimal flutter active control method based on measured receptances and flutter margins is proposed. It enables assignment of the flutter boundary to a prescribed wind speed value or range for each considered angle of attack (AoA), while simultaneously minimizing vibration responses at subcritical wind speeds, using a single controller with optimal control effort. Hence, the designed controller is robust to the variations of wind speed and AoA. The proposed flutter prediction and control methods require only a small number of systems’ modal parameters or open-loop receptances at several subcritical wind speeds. The proposed flutter prediction method typically requires fewer system modal parameters than existing methods that track the variation of damping ratio against wind speed. The proposed flutter suppression method avoids some modeling errors associated with conventional system matrix-based methods. The working of the proposed flutter prediction and control methods are validated using wind tunnel tests and CFD simulations, respectively.</p>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/4905453\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/4905453\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/4905453","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Bridge Flutter Prediction and Active Control Using Modal Information and Flutter Margins
In this paper, a flutter prediction method based on flutter margins is proposed for streamlined bridges whose aeroelastic behavior can be well approximated by a two-degree-of-freedom (2-DoF) flutter model. The method enables prediction of the flutter boundary by extrapolating a curve of flutter margin versus wind speed, constructed using flutter margins at several subcritical wind speeds. In addition, an -optimal flutter active control method based on measured receptances and flutter margins is proposed. It enables assignment of the flutter boundary to a prescribed wind speed value or range for each considered angle of attack (AoA), while simultaneously minimizing vibration responses at subcritical wind speeds, using a single controller with optimal control effort. Hence, the designed controller is robust to the variations of wind speed and AoA. The proposed flutter prediction and control methods require only a small number of systems’ modal parameters or open-loop receptances at several subcritical wind speeds. The proposed flutter prediction method typically requires fewer system modal parameters than existing methods that track the variation of damping ratio against wind speed. The proposed flutter suppression method avoids some modeling errors associated with conventional system matrix-based methods. The working of the proposed flutter prediction and control methods are validated using wind tunnel tests and CFD simulations, respectively.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.