m-一致图状态的码字稳定码

IF 2.2
Sowrabh Sudevan;Sourin Das;Thamadathil Aswanth;Nupur Patanker;Navin Kashyap
{"title":"m-一致图状态的码字稳定码","authors":"Sowrabh Sudevan;Sourin Das;Thamadathil Aswanth;Nupur Patanker;Navin Kashyap","doi":"10.1109/JSAIT.2025.3602744","DOIUrl":null,"url":null,"abstract":"An m-uniform quantum state on n qubits is an entangled state in which every m-qubit subsystem is maximally mixed. Starting with an m-uniform state realized as the graph state associated with an m-regular graph, and a classical <inline-formula> <tex-math>$[n,k,d \\ge m+1]$ </tex-math></inline-formula> binary linear code with certain additional properties, we show that pure <inline-formula> <tex-math>$[[n,k,m+1]]_{2}$ </tex-math></inline-formula> quantum error-correcting codes (QECCs) can be constructed within the codeword stabilized (CWS) code framework. As illustrations, we construct pure <inline-formula> <tex-math>$[[{2^{2r}-1,2^{2r}-2r-3,3}]]_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$[[(2^{4r}-1)^{2}, (2^{4r}-1)^{2} - 32r-7, 5]]_{2}$ </tex-math></inline-formula> QECCs. We also give measurement-based protocols for encoding into code states and for recovery of logical qubits from code states.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"296-310"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codeword Stabilized Codes From m-Uniform Graph States\",\"authors\":\"Sowrabh Sudevan;Sourin Das;Thamadathil Aswanth;Nupur Patanker;Navin Kashyap\",\"doi\":\"10.1109/JSAIT.2025.3602744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An m-uniform quantum state on n qubits is an entangled state in which every m-qubit subsystem is maximally mixed. Starting with an m-uniform state realized as the graph state associated with an m-regular graph, and a classical <inline-formula> <tex-math>$[n,k,d \\\\ge m+1]$ </tex-math></inline-formula> binary linear code with certain additional properties, we show that pure <inline-formula> <tex-math>$[[n,k,m+1]]_{2}$ </tex-math></inline-formula> quantum error-correcting codes (QECCs) can be constructed within the codeword stabilized (CWS) code framework. As illustrations, we construct pure <inline-formula> <tex-math>$[[{2^{2r}-1,2^{2r}-2r-3,3}]]_{2}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$[[(2^{4r}-1)^{2}, (2^{4r}-1)^{2} - 32r-7, 5]]_{2}$ </tex-math></inline-formula> QECCs. We also give measurement-based protocols for encoding into code states and for recovery of logical qubits from code states.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"296-310\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11141457/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11141457/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

n个量子比特上的m-均匀量子态是每个m-量子比特子系统最大程度混合的纠缠态。从实现为与m正则图相关联的图形状态的m-均匀状态和具有某些附加性质的经典$[n,k,d \ge m+1]$二进制线性码开始,我们证明了在码字稳定(CWS)码框架内可以构造纯$[[n,k,m+1]]_{2}$量子纠错码(QECCs)。作为插图,我们构造纯美元[[{2 ^ {2 r} 1、2 ^ {2 r} 2延长三,3}]]_{2}$和$ (((2 ^ {4 r} 1) ^ {2}, (2 ^ {4 r} 1) ^ {2} - 32 r7秘密,5]]_ {2}QECCs美元。我们还提供了基于测量的协议,用于编码到代码状态和从代码状态中恢复逻辑量子位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Codeword Stabilized Codes From m-Uniform Graph States
An m-uniform quantum state on n qubits is an entangled state in which every m-qubit subsystem is maximally mixed. Starting with an m-uniform state realized as the graph state associated with an m-regular graph, and a classical $[n,k,d \ge m+1]$ binary linear code with certain additional properties, we show that pure $[[n,k,m+1]]_{2}$ quantum error-correcting codes (QECCs) can be constructed within the codeword stabilized (CWS) code framework. As illustrations, we construct pure $[[{2^{2r}-1,2^{2r}-2r-3,3}]]_{2}$ and $[[(2^{4r}-1)^{2}, (2^{4r}-1)^{2} - 32r-7, 5]]_{2}$ QECCs. We also give measurement-based protocols for encoding into code states and for recovery of logical qubits from code states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信