裁剪对量子算法的容错

IF 2.2
Zhuangzhuang Chen;Narayanan Rengaswamy
{"title":"裁剪对量子算法的容错","authors":"Zhuangzhuang Chen;Narayanan Rengaswamy","doi":"10.1109/JSAIT.2025.3602446","DOIUrl":null,"url":null,"abstract":"The standard approach to universal fault-tolerant quantum computing is to develop a general purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. Given such a scheme, any quantum algorithm can be realized fault-tolerantly by composing the relevant logical gates from this set. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms. Hence, a universal quantum computer can likely gain from compiling such specific algorithms using tailored quantum error correction schemes. In this work, we take the first steps towards such algorithm-tailored quantum fault-tolerance. We consider Trotter circuits in quantum simulation, which is an important application of quantum computing. We develop a solve-and-stitch algorithm to systematically synthesize physical realizations of Clifford Trotter circuits on the well-known <inline-formula> <tex-math>$[\\![n,n-2,2]\\!]$ </tex-math></inline-formula> error-detecting code family. Our analysis shows that this family implements Trotter circuits with essentially optimal depth under reasonable assumptions, thereby serving as an illuminating example of tailored quantum error correction. We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead. Importantly, the solve-and-stitch algorithm has the potential to scale beyond this specific example, as illustrated by a generalization to the four-qubit logical Clifford Trotter circuit on the <inline-formula> <tex-math>$[\\![{ 20,4,2 }]\\!] $ </tex-math></inline-formula> hypergraph product code, thereby providing a principled approach to tailored fault-tolerance in quantum computing.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"311-324"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Fault-Tolerance to Quantum Algorithms\",\"authors\":\"Zhuangzhuang Chen;Narayanan Rengaswamy\",\"doi\":\"10.1109/JSAIT.2025.3602446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard approach to universal fault-tolerant quantum computing is to develop a general purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. Given such a scheme, any quantum algorithm can be realized fault-tolerantly by composing the relevant logical gates from this set. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms. Hence, a universal quantum computer can likely gain from compiling such specific algorithms using tailored quantum error correction schemes. In this work, we take the first steps towards such algorithm-tailored quantum fault-tolerance. We consider Trotter circuits in quantum simulation, which is an important application of quantum computing. We develop a solve-and-stitch algorithm to systematically synthesize physical realizations of Clifford Trotter circuits on the well-known <inline-formula> <tex-math>$[\\\\![n,n-2,2]\\\\!]$ </tex-math></inline-formula> error-detecting code family. Our analysis shows that this family implements Trotter circuits with essentially optimal depth under reasonable assumptions, thereby serving as an illuminating example of tailored quantum error correction. We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead. Importantly, the solve-and-stitch algorithm has the potential to scale beyond this specific example, as illustrated by a generalization to the four-qubit logical Clifford Trotter circuit on the <inline-formula> <tex-math>$[\\\\![{ 20,4,2 }]\\\\!] $ </tex-math></inline-formula> hypergraph product code, thereby providing a principled approach to tailored fault-tolerance in quantum computing.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"311-324\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11141414/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11141414/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通用容错量子计算的标准方法是开发一种通用的量子纠错机制,实现一组通用的逻辑门容错。给定这样的方案,任何量子算法都可以通过由该集合组成相应的逻辑门来实现容错。然而,我们知道量子计算机仅为特定的量子算法提供了显著的量子优势。因此,通用量子计算机可能会从使用定制的量子纠错方案编译这些特定算法中获益。在这项工作中,我们向这种算法定制的量子容错迈出了第一步。我们在量子模拟中考虑了Trotter电路,这是量子计算的一个重要应用。我们开发了一种求解-缝合算法来系统地合成Clifford Trotter电路在著名的$[\![n,n-2,2]\!$错误检测代码族。我们的分析表明,该系列在合理的假设下实现了具有基本最佳深度的Trotter电路,从而成为定制量子纠错的一个有启发意义的例子。我们使用标志器件来实现这些电路的容错,这增加了最小的开销。重要的是,求解和缝合算法有可能扩展到超出这个特定示例的范围,正如对$[\![{20,4,2}]\!$ hypergraph产品代码,从而提供了一种在量子计算中定制容错的原则方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Fault-Tolerance to Quantum Algorithms
The standard approach to universal fault-tolerant quantum computing is to develop a general purpose quantum error correction mechanism that can implement a universal set of logical gates fault-tolerantly. Given such a scheme, any quantum algorithm can be realized fault-tolerantly by composing the relevant logical gates from this set. However, we know that quantum computers provide a significant quantum advantage only for specific quantum algorithms. Hence, a universal quantum computer can likely gain from compiling such specific algorithms using tailored quantum error correction schemes. In this work, we take the first steps towards such algorithm-tailored quantum fault-tolerance. We consider Trotter circuits in quantum simulation, which is an important application of quantum computing. We develop a solve-and-stitch algorithm to systematically synthesize physical realizations of Clifford Trotter circuits on the well-known $[\![n,n-2,2]\!]$ error-detecting code family. Our analysis shows that this family implements Trotter circuits with essentially optimal depth under reasonable assumptions, thereby serving as an illuminating example of tailored quantum error correction. We achieve fault-tolerance for these circuits using flag gadgets, which add minimal overhead. Importantly, the solve-and-stitch algorithm has the potential to scale beyond this specific example, as illustrated by a generalization to the four-qubit logical Clifford Trotter circuit on the $[\![{ 20,4,2 }]\!] $ hypergraph product code, thereby providing a principled approach to tailored fault-tolerance in quantum computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信