MAIP:图像语义广播通信的多属性信息代理

IF 4.8 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhuo Zhang;Shuai Xiao;Guipeng Lan;Meng Xi;Jiabao Wen;Jiachen Yang
{"title":"MAIP:图像语义广播通信的多属性信息代理","authors":"Zhuo Zhang;Shuai Xiao;Guipeng Lan;Meng Xi;Jiabao Wen;Jiachen Yang","doi":"10.1109/TBC.2025.3573144","DOIUrl":null,"url":null,"abstract":"In the image semantic broadcasting communication system, the resources of the channel are limited, which restricts the transmission and broadcasting of large-scale image data. This paper proposed a deep learning assisted image semantic broadcasting scheme to improve source efficiency and alleviate communication resource pressure at the transmission terminal. We adopt an image informativeness evaluation method to screen high information image data and implement this data-driven source optimization scheme. Specifically, we propose a Multi Attribute Information Proxy (MAIP) method that integrates fine-grained information attributes such as uncertainty, novelty, and diversity to evaluate and screen image semantic broadcast data. Used to support the formation of optimal image data broadcast transmission strategies. To demonstrate the effectiveness of the proposed MAIP, we compared it with state-of-the-art over three benchmarks CIFAR-10, mini ImageNet and Fashion Minst based on active learning as a validation experiment.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 3","pages":"903-913"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAIP: A Multi-Attribute Informativeness Proxy for Image Semantic Broadcasting Communication\",\"authors\":\"Zhuo Zhang;Shuai Xiao;Guipeng Lan;Meng Xi;Jiabao Wen;Jiachen Yang\",\"doi\":\"10.1109/TBC.2025.3573144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the image semantic broadcasting communication system, the resources of the channel are limited, which restricts the transmission and broadcasting of large-scale image data. This paper proposed a deep learning assisted image semantic broadcasting scheme to improve source efficiency and alleviate communication resource pressure at the transmission terminal. We adopt an image informativeness evaluation method to screen high information image data and implement this data-driven source optimization scheme. Specifically, we propose a Multi Attribute Information Proxy (MAIP) method that integrates fine-grained information attributes such as uncertainty, novelty, and diversity to evaluate and screen image semantic broadcast data. Used to support the formation of optimal image data broadcast transmission strategies. To demonstrate the effectiveness of the proposed MAIP, we compared it with state-of-the-art over three benchmarks CIFAR-10, mini ImageNet and Fashion Minst based on active learning as a validation experiment.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"71 3\",\"pages\":\"903-913\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11031091/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11031091/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在图像语义广播通信系统中,由于信道资源有限,限制了大规模图像数据的传输和广播。本文提出了一种深度学习辅助图像语义广播方案,以提高源效率,缓解传输终端的通信资源压力。采用图像信息量评价方法筛选高信息量的图像数据,实现数据驱动的数据源优化方案。具体而言,我们提出了一种多属性信息代理(MAIP)方法,该方法集成了不确定性、新颖性和多样性等细粒度信息属性,以评估和筛选图像语义广播数据。用于支持形成最优的图像数据广播传输策略。为了证明所提出的MAIP的有效性,我们将其与基于主动学习的最先进的三个基准CIFAR-10, mini ImageNet和Fashion Minst进行了比较,作为验证实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAIP: A Multi-Attribute Informativeness Proxy for Image Semantic Broadcasting Communication
In the image semantic broadcasting communication system, the resources of the channel are limited, which restricts the transmission and broadcasting of large-scale image data. This paper proposed a deep learning assisted image semantic broadcasting scheme to improve source efficiency and alleviate communication resource pressure at the transmission terminal. We adopt an image informativeness evaluation method to screen high information image data and implement this data-driven source optimization scheme. Specifically, we propose a Multi Attribute Information Proxy (MAIP) method that integrates fine-grained information attributes such as uncertainty, novelty, and diversity to evaluate and screen image semantic broadcast data. Used to support the formation of optimal image data broadcast transmission strategies. To demonstrate the effectiveness of the proposed MAIP, we compared it with state-of-the-art over three benchmarks CIFAR-10, mini ImageNet and Fashion Minst based on active learning as a validation experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信