基于中国剩余定理的加密图像可逆数据隐藏

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiani Chen;Dawen Xu
{"title":"基于中国剩余定理的加密图像可逆数据隐藏","authors":"Jiani Chen;Dawen Xu","doi":"10.1109/TCC.2025.3570327","DOIUrl":null,"url":null,"abstract":"To deal with the development of the distributed server, this article proposes a new method for reversible data hiding in encrypted images based on the Chinese Remainder Theorem (CRT), encrypting and sharing one image to multiple data hiders through <inline-formula><tex-math>$(k,n)$</tex-math></inline-formula>-threshold secret sharing. First, an original image is divided into the most significant bit (MSB) compression area and the least significant bit (LSB) area by utilizing the spatial correlation. The <inline-formula><tex-math>$l$</tex-math></inline-formula>-MSB layers are predicted to obtain prediction errors, and these prediction errors are compressed by Huffman coding. Then according to the value of <inline-formula><tex-math>$k$</tex-math></inline-formula>, CRT and secret sharing scheme are performed on the <inline-formula><tex-math>$(8-l)$</tex-math></inline-formula>-LSB layers to generate the shared bitstream. Finally, <inline-formula><tex-math>$n$</tex-math></inline-formula> encrypted images for sharing consist of MSB compression bitstreams and shared bitstreams, whose size is adjusted based on <inline-formula><tex-math>$k$</tex-math></inline-formula> value. Each data hider can independently embed secret data after having one of the encrypted images, while the receiver can recover the original image only after receiving <inline-formula><tex-math>$k$</tex-math></inline-formula> or more encrypted images. Experimental results show that the proposed algorithm not only provides a large embedding space for secret data, but is also able to complete the inverse operation of data hiding and realize the lossless recovery of the original image with <inline-formula><tex-math>$(k,n)$</tex-math></inline-formula>-threshold secret sharing.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 3","pages":"821-836"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible Data Hiding in Encrypted Images Based on Chinese Remainder Theorem\",\"authors\":\"Jiani Chen;Dawen Xu\",\"doi\":\"10.1109/TCC.2025.3570327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To deal with the development of the distributed server, this article proposes a new method for reversible data hiding in encrypted images based on the Chinese Remainder Theorem (CRT), encrypting and sharing one image to multiple data hiders through <inline-formula><tex-math>$(k,n)$</tex-math></inline-formula>-threshold secret sharing. First, an original image is divided into the most significant bit (MSB) compression area and the least significant bit (LSB) area by utilizing the spatial correlation. The <inline-formula><tex-math>$l$</tex-math></inline-formula>-MSB layers are predicted to obtain prediction errors, and these prediction errors are compressed by Huffman coding. Then according to the value of <inline-formula><tex-math>$k$</tex-math></inline-formula>, CRT and secret sharing scheme are performed on the <inline-formula><tex-math>$(8-l)$</tex-math></inline-formula>-LSB layers to generate the shared bitstream. Finally, <inline-formula><tex-math>$n$</tex-math></inline-formula> encrypted images for sharing consist of MSB compression bitstreams and shared bitstreams, whose size is adjusted based on <inline-formula><tex-math>$k$</tex-math></inline-formula> value. Each data hider can independently embed secret data after having one of the encrypted images, while the receiver can recover the original image only after receiving <inline-formula><tex-math>$k$</tex-math></inline-formula> or more encrypted images. Experimental results show that the proposed algorithm not only provides a large embedding space for secret data, but is also able to complete the inverse operation of data hiding and realize the lossless recovery of the original image with <inline-formula><tex-math>$(k,n)$</tex-math></inline-formula>-threshold secret sharing.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"13 3\",\"pages\":\"821-836\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11004437/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11004437/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对分布式服务器的发展,本文提出了一种基于中国剩余定理(CRT)的加密图像中可逆数据隐藏的新方法,通过$(k,n)$-阈值秘密共享,对一张图像进行加密并共享给多个数据隐藏者。首先,利用空间相关性将原始图像划分为最高有效位(MSB)压缩区和最低有效位(LSB)压缩区;对$l$-MSB层进行预测,得到预测误差,并对预测误差进行霍夫曼编码压缩。然后根据$k$的值,在$(8- 1)$-LSB层执行CRT和秘密共享方案,生成共享的比特流。最后,用于共享的$n$加密图像由MSB压缩比特流和共享比特流组成,其大小根据$k$值进行调整。每个数据隐藏者在拥有一张加密图像后可以独立嵌入秘密数据,而接收方只有在接收到$k$或更多加密图像后才能恢复原始图像。实验结果表明,该算法不仅为秘密数据提供了较大的嵌入空间,而且能够完成数据隐藏的逆操作,实现$(k,n)$-阈值秘密共享对原始图像的无损恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reversible Data Hiding in Encrypted Images Based on Chinese Remainder Theorem
To deal with the development of the distributed server, this article proposes a new method for reversible data hiding in encrypted images based on the Chinese Remainder Theorem (CRT), encrypting and sharing one image to multiple data hiders through $(k,n)$-threshold secret sharing. First, an original image is divided into the most significant bit (MSB) compression area and the least significant bit (LSB) area by utilizing the spatial correlation. The $l$-MSB layers are predicted to obtain prediction errors, and these prediction errors are compressed by Huffman coding. Then according to the value of $k$, CRT and secret sharing scheme are performed on the $(8-l)$-LSB layers to generate the shared bitstream. Finally, $n$ encrypted images for sharing consist of MSB compression bitstreams and shared bitstreams, whose size is adjusted based on $k$ value. Each data hider can independently embed secret data after having one of the encrypted images, while the receiver can recover the original image only after receiving $k$ or more encrypted images. Experimental results show that the proposed algorithm not only provides a large embedding space for secret data, but is also able to complete the inverse operation of data hiding and realize the lossless recovery of the original image with $(k,n)$-threshold secret sharing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信