{"title":"复合DNA存储通道的输入优化","authors":"Adir Kobovich;Nir Weinberger","doi":"10.1109/JSAIT.2025.3595005","DOIUrl":null,"url":null,"abstract":"Recent advancements in DNA storage show that composite DNA letters can significantly enhance storage capacity. We model this process as a multinomial channel and propose an optimization algorithm to determine its capacity-achieving input distribution (CAID) for an arbitrary number of output reads. Our empirical results match a scaling law that determines that the support size grows exponentially with capacity. In addition, we introduce a limited-support optimization algorithm that optimizes the input distribution under a restricted support size, making it more feasible for real-world DNA storage systems. We also extend our model to account for noise and study its effect on capacity and input design.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"248-260"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input Optimization in the Composite DNA Storage Channel\",\"authors\":\"Adir Kobovich;Nir Weinberger\",\"doi\":\"10.1109/JSAIT.2025.3595005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in DNA storage show that composite DNA letters can significantly enhance storage capacity. We model this process as a multinomial channel and propose an optimization algorithm to determine its capacity-achieving input distribution (CAID) for an arbitrary number of output reads. Our empirical results match a scaling law that determines that the support size grows exponentially with capacity. In addition, we introduce a limited-support optimization algorithm that optimizes the input distribution under a restricted support size, making it more feasible for real-world DNA storage systems. We also extend our model to account for noise and study its effect on capacity and input design.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"248-260\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11107232/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11107232/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Input Optimization in the Composite DNA Storage Channel
Recent advancements in DNA storage show that composite DNA letters can significantly enhance storage capacity. We model this process as a multinomial channel and propose an optimization algorithm to determine its capacity-achieving input distribution (CAID) for an arbitrary number of output reads. Our empirical results match a scaling law that determines that the support size grows exponentially with capacity. In addition, we introduce a limited-support optimization algorithm that optimizes the input distribution under a restricted support size, making it more feasible for real-world DNA storage systems. We also extend our model to account for noise and study its effect on capacity and input design.