遥感显著目标检测的多模态引导变压器结构

IF 4.4
Bei Cheng;Zao Liu;Huxiao Tang;Qingwang Wang;Wenhao Chen;Tao Chen;Tao Shen
{"title":"遥感显著目标检测的多模态引导变压器结构","authors":"Bei Cheng;Zao Liu;Huxiao Tang;Qingwang Wang;Wenhao Chen;Tao Chen;Tao Shen","doi":"10.1109/LGRS.2025.3601083","DOIUrl":null,"url":null,"abstract":"The latest remote sensing image saliency detectors primarily rely on RGB information alone. However, spatial and geometric information embedded in depth images is robust to variations in lighting and color. Integrating depth information with RGB images can enhance the spatial structure of objects. In light of this, we innovatively propose a remote sensing image saliency detection model that fuses RGB and depth information, named the multimodal-guided transformer architecture (MGTA). Specifically, we first introduce the strongly correlated complementary fusion (SCCF) module to explore cross-modal consistency and similarity, maintaining consistency across different modalities while uncovering multidimensional common information. In addition, the global–local context information interaction (GLCII) module is designed to extract global semantic information and local detail information, effectively utilizing contextual information while reducing the number of parameters. Finally, a cascaded feature-guided decoder (CFGD) is employed to gradually fuse hierarchical decoding features, effectively integrating multilevel data and accurately locating target positions. Extensive experiments demonstrate that our proposed model outperforms 14 state-of-the-art methods. The code and results of our method are available at <uri>https://github.com/Zackisliuzao/MGTANet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal-Guided Transformer Architecture for Remote Sensing Salient Object Detection\",\"authors\":\"Bei Cheng;Zao Liu;Huxiao Tang;Qingwang Wang;Wenhao Chen;Tao Chen;Tao Shen\",\"doi\":\"10.1109/LGRS.2025.3601083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The latest remote sensing image saliency detectors primarily rely on RGB information alone. However, spatial and geometric information embedded in depth images is robust to variations in lighting and color. Integrating depth information with RGB images can enhance the spatial structure of objects. In light of this, we innovatively propose a remote sensing image saliency detection model that fuses RGB and depth information, named the multimodal-guided transformer architecture (MGTA). Specifically, we first introduce the strongly correlated complementary fusion (SCCF) module to explore cross-modal consistency and similarity, maintaining consistency across different modalities while uncovering multidimensional common information. In addition, the global–local context information interaction (GLCII) module is designed to extract global semantic information and local detail information, effectively utilizing contextual information while reducing the number of parameters. Finally, a cascaded feature-guided decoder (CFGD) is employed to gradually fuse hierarchical decoding features, effectively integrating multilevel data and accurately locating target positions. Extensive experiments demonstrate that our proposed model outperforms 14 state-of-the-art methods. The code and results of our method are available at <uri>https://github.com/Zackisliuzao/MGTANet</uri>\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11133601/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11133601/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最新的遥感图像显著性检测器主要依赖于RGB信息。然而,嵌入在深度图像中的空间和几何信息对光照和颜色的变化具有鲁棒性。将深度信息与RGB图像相结合可以增强物体的空间结构。鉴于此,我们创新性地提出了一种融合RGB和深度信息的遥感图像显著性检测模型,命名为多模态引导变压器架构(multimodal-guided transformer architecture, MGTA)。具体来说,我们首先引入了强相关互补融合(SCCF)模块来探索跨模态一致性和相似性,在发现多维公共信息的同时保持不同模态之间的一致性。此外,设计了全局-局部上下文信息交互(GLCII)模块,提取全局语义信息和局部细节信息,在减少参数数量的同时有效利用上下文信息。最后,采用级联特征引导解码器(CFGD)逐步融合分层解码特征,有效整合多层数据,准确定位目标位置。大量的实验表明,我们提出的模型优于14种最先进的方法。我们的方法的代码和结果可在https://github.com/Zackisliuzao/MGTANet上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal-Guided Transformer Architecture for Remote Sensing Salient Object Detection
The latest remote sensing image saliency detectors primarily rely on RGB information alone. However, spatial and geometric information embedded in depth images is robust to variations in lighting and color. Integrating depth information with RGB images can enhance the spatial structure of objects. In light of this, we innovatively propose a remote sensing image saliency detection model that fuses RGB and depth information, named the multimodal-guided transformer architecture (MGTA). Specifically, we first introduce the strongly correlated complementary fusion (SCCF) module to explore cross-modal consistency and similarity, maintaining consistency across different modalities while uncovering multidimensional common information. In addition, the global–local context information interaction (GLCII) module is designed to extract global semantic information and local detail information, effectively utilizing contextual information while reducing the number of parameters. Finally, a cascaded feature-guided decoder (CFGD) is employed to gradually fuse hierarchical decoding features, effectively integrating multilevel data and accurately locating target positions. Extensive experiments demonstrate that our proposed model outperforms 14 state-of-the-art methods. The code and results of our method are available at https://github.com/Zackisliuzao/MGTANet
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信