三电平TNPC-IGBT逆变器的实验实现:mpc驱动开关优化、LCL滤波器集成和实时应力监测

IF 3.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ahmed H. Okilly;Cheolgyu Kim;Jeihoon Baek
{"title":"三电平TNPC-IGBT逆变器的实验实现:mpc驱动开关优化、LCL滤波器集成和实时应力监测","authors":"Ahmed H. Okilly;Cheolgyu Kim;Jeihoon Baek","doi":"10.1109/ACCESS.2025.3604037","DOIUrl":null,"url":null,"abstract":"The increasing demand for high-quality power conversion in industrial applications has led to advancements in multilevel inverter design and control. This paper presents a design and experimental implementation of a 3-level T-type neutral-point clamped (TNPC) inverter utilizing space vector pulse width modulation (SVPWM) and model predictive control (MPC) for optimized switching state selection. The proposed approach ensures DC-link voltage balance, symmetrical load voltage and current, reduced voltage harmonics, and uniform stress distribution among the inverter’s three legs. An LCL filter is integrated based on phase margin optimization criteria to maintain total harmonic distortion (THD) of the current within acceptable limits. Real-time stress monitoring circuits are developed to assess key parameters including on-state voltage, case temperature, and collector current, which are essential for the reliability analysis of the IGBT modules. The configuration is validated through laboratory experimentation and the use of a highly inductive load with currents of up to 100 A. Findings indicate uniform voltage and current distribution, reduced harmonics of less than 0.1% for current and 5% for voltage, under full load conditions, and enhanced dynamic performance and system reliability, making the proposed method suitable for high-quality industrial applications. Furthermore, the developed experimental setup with uniform stress distribution simplifies the TNPC-IGBT module reliability assessment using a one-leg equivalent circuit to estimate the lifespan and conduct reliability analysis, rather than analyzing the module’s three legs.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"152762-152781"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11145028","citationCount":"0","resultStr":"{\"title\":\"Experimental Implementation of a 3-Level TNPC-IGBT Inverter for Uniform Stress Distribution and THD Mitigation: MPC-Driven Switching Optimization, LCL Filter Integration, and Real-Time Stress Monitoring\",\"authors\":\"Ahmed H. Okilly;Cheolgyu Kim;Jeihoon Baek\",\"doi\":\"10.1109/ACCESS.2025.3604037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for high-quality power conversion in industrial applications has led to advancements in multilevel inverter design and control. This paper presents a design and experimental implementation of a 3-level T-type neutral-point clamped (TNPC) inverter utilizing space vector pulse width modulation (SVPWM) and model predictive control (MPC) for optimized switching state selection. The proposed approach ensures DC-link voltage balance, symmetrical load voltage and current, reduced voltage harmonics, and uniform stress distribution among the inverter’s three legs. An LCL filter is integrated based on phase margin optimization criteria to maintain total harmonic distortion (THD) of the current within acceptable limits. Real-time stress monitoring circuits are developed to assess key parameters including on-state voltage, case temperature, and collector current, which are essential for the reliability analysis of the IGBT modules. The configuration is validated through laboratory experimentation and the use of a highly inductive load with currents of up to 100 A. Findings indicate uniform voltage and current distribution, reduced harmonics of less than 0.1% for current and 5% for voltage, under full load conditions, and enhanced dynamic performance and system reliability, making the proposed method suitable for high-quality industrial applications. Furthermore, the developed experimental setup with uniform stress distribution simplifies the TNPC-IGBT module reliability assessment using a one-leg equivalent circuit to estimate the lifespan and conduct reliability analysis, rather than analyzing the module’s three legs.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"13 \",\"pages\":\"152762-152781\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11145028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11145028/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11145028/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

工业应用中对高质量功率转换的需求日益增长,导致了多电平逆变器设计和控制的进步。本文提出了一种利用空间矢量脉宽调制(SVPWM)和模型预测控制(MPC)优化开关状态选择的3电平t型中性点箝位(TNPC)逆变器的设计和实验实现。该方法保证了直流链路电压平衡、负载电压和电流对称、电压谐波降低以及逆变器三支腿间应力分布均匀。基于相位裕度优化准则集成了LCL滤波器,使电流的总谐波失真(THD)保持在可接受的范围内。开发了实时应力监测电路来评估关键参数,包括导通电压、外壳温度和集电极电流,这些参数对IGBT模块的可靠性分析至关重要。该配置通过实验室实验和使用电流高达100 a的高感性负载进行验证。结果表明,在全负荷条件下,电压和电流分布均匀,电流和电压的谐波值分别低于0.1%和5%,并且增强了动态性能和系统可靠性,使该方法适用于高质量的工业应用。此外,开发的均匀应力分布实验装置简化了TNPC-IGBT模块可靠性评估,使用单腿等效电路来估计寿命并进行可靠性分析,而不是分析模块的三个腿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Implementation of a 3-Level TNPC-IGBT Inverter for Uniform Stress Distribution and THD Mitigation: MPC-Driven Switching Optimization, LCL Filter Integration, and Real-Time Stress Monitoring
The increasing demand for high-quality power conversion in industrial applications has led to advancements in multilevel inverter design and control. This paper presents a design and experimental implementation of a 3-level T-type neutral-point clamped (TNPC) inverter utilizing space vector pulse width modulation (SVPWM) and model predictive control (MPC) for optimized switching state selection. The proposed approach ensures DC-link voltage balance, symmetrical load voltage and current, reduced voltage harmonics, and uniform stress distribution among the inverter’s three legs. An LCL filter is integrated based on phase margin optimization criteria to maintain total harmonic distortion (THD) of the current within acceptable limits. Real-time stress monitoring circuits are developed to assess key parameters including on-state voltage, case temperature, and collector current, which are essential for the reliability analysis of the IGBT modules. The configuration is validated through laboratory experimentation and the use of a highly inductive load with currents of up to 100 A. Findings indicate uniform voltage and current distribution, reduced harmonics of less than 0.1% for current and 5% for voltage, under full load conditions, and enhanced dynamic performance and system reliability, making the proposed method suitable for high-quality industrial applications. Furthermore, the developed experimental setup with uniform stress distribution simplifies the TNPC-IGBT module reliability assessment using a one-leg equivalent circuit to estimate the lifespan and conduct reliability analysis, rather than analyzing the module’s three legs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信