{"title":"在边缘云辅助AIoT上实现教学方式分析的增强双线性注意网络:声音-身体协调视角","authors":"Yu Zhou;Sai Zou;Bochun Wu;Wei Ni;Xiaojiang Du","doi":"10.1109/TCC.2025.3568394","DOIUrl":null,"url":null,"abstract":"Edge computing, an advanced extension of cloud computing, provides superior computational capabilities and low-latency processing at the network edge, facilitating its availability for real-time data analysis in resource-limited settings. When applied to the analysis of teaching methodologies, edge computing enables the seamless integration of vocal and physical cues, facilitating collaborative, dynamic, and real-time evaluations of teaching quality. However, the inherent complexity of human perception and multimodal interactions impose great challenges to the analysis of these aspects in Artificial Intelligence of Things (AIoT). This paper introduces an innovative mathematical model and a measurement index specifically designed to assess changes in voice-body coordination over time. To achieve this, we propose a cloud-enabled enhanced Bi-Linear Attention Network incorporating entropy and Fourier transforms (BAN-E-FT), which leverages both temporal and frequency-domain features. Specifically, by harnessing the computational and storage capabilities of edge computing, BAN-E-FT facilitates distributed training, expedites large-scale data processing, and enhances model scalability, where entropy measures and Fourier transforms capture modality dynamics, enhancing BAN's fusion capabilities. Moreover, a conditional domain adversarial network is embedded to address regional teaching variations, improving model generalizability. We also verify the robustness of BAN-E-FT with accuracy and convergence through convex optimization analysis. Experiments on the eNTERFACE’05 dataset demonstrate 81% accuracy in assessing teaching adaptability, while real-world test at Guizhou University confirms 78% accuracy when using BAN-E-FT, matching human expert assessments.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 3","pages":"769-782"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Enhanced Bi-Linear Attention Network for Teaching Manner Analysis Over Edge Cloud-Assisted AIoT: Voice-Body Coordination Perspective\",\"authors\":\"Yu Zhou;Sai Zou;Bochun Wu;Wei Ni;Xiaojiang Du\",\"doi\":\"10.1109/TCC.2025.3568394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing, an advanced extension of cloud computing, provides superior computational capabilities and low-latency processing at the network edge, facilitating its availability for real-time data analysis in resource-limited settings. When applied to the analysis of teaching methodologies, edge computing enables the seamless integration of vocal and physical cues, facilitating collaborative, dynamic, and real-time evaluations of teaching quality. However, the inherent complexity of human perception and multimodal interactions impose great challenges to the analysis of these aspects in Artificial Intelligence of Things (AIoT). This paper introduces an innovative mathematical model and a measurement index specifically designed to assess changes in voice-body coordination over time. To achieve this, we propose a cloud-enabled enhanced Bi-Linear Attention Network incorporating entropy and Fourier transforms (BAN-E-FT), which leverages both temporal and frequency-domain features. Specifically, by harnessing the computational and storage capabilities of edge computing, BAN-E-FT facilitates distributed training, expedites large-scale data processing, and enhances model scalability, where entropy measures and Fourier transforms capture modality dynamics, enhancing BAN's fusion capabilities. Moreover, a conditional domain adversarial network is embedded to address regional teaching variations, improving model generalizability. We also verify the robustness of BAN-E-FT with accuracy and convergence through convex optimization analysis. Experiments on the eNTERFACE’05 dataset demonstrate 81% accuracy in assessing teaching adaptability, while real-world test at Guizhou University confirms 78% accuracy when using BAN-E-FT, matching human expert assessments.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"13 3\",\"pages\":\"769-782\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10994355/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10994355/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Achieving Enhanced Bi-Linear Attention Network for Teaching Manner Analysis Over Edge Cloud-Assisted AIoT: Voice-Body Coordination Perspective
Edge computing, an advanced extension of cloud computing, provides superior computational capabilities and low-latency processing at the network edge, facilitating its availability for real-time data analysis in resource-limited settings. When applied to the analysis of teaching methodologies, edge computing enables the seamless integration of vocal and physical cues, facilitating collaborative, dynamic, and real-time evaluations of teaching quality. However, the inherent complexity of human perception and multimodal interactions impose great challenges to the analysis of these aspects in Artificial Intelligence of Things (AIoT). This paper introduces an innovative mathematical model and a measurement index specifically designed to assess changes in voice-body coordination over time. To achieve this, we propose a cloud-enabled enhanced Bi-Linear Attention Network incorporating entropy and Fourier transforms (BAN-E-FT), which leverages both temporal and frequency-domain features. Specifically, by harnessing the computational and storage capabilities of edge computing, BAN-E-FT facilitates distributed training, expedites large-scale data processing, and enhances model scalability, where entropy measures and Fourier transforms capture modality dynamics, enhancing BAN's fusion capabilities. Moreover, a conditional domain adversarial network is embedded to address regional teaching variations, improving model generalizability. We also verify the robustness of BAN-E-FT with accuracy and convergence through convex optimization analysis. Experiments on the eNTERFACE’05 dataset demonstrate 81% accuracy in assessing teaching adaptability, while real-world test at Guizhou University confirms 78% accuracy when using BAN-E-FT, matching human expert assessments.
期刊介绍:
The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.