{"title":"2024年10月10日和11日强磁暴期间在南美洲观测到的超级赤道等离子体气泡","authors":"Yumei Li;Hong Zhang;Fan Xu;Qiong Ding;Long Tang","doi":"10.1109/LGRS.2025.3603418","DOIUrl":null,"url":null,"abstract":"On October 10, 2024, the second most intense geomagnetic storm of solar cycle 25 to date took place. This storm was triggered by multiple coronal mass ejections (CMEs) that arrived at Earth from October 7 to 9, causing significant geomagnetic disturbances. The geomagnetic Kp index peaked at its highest level (Kp = 9), indicating a red alert status. This study investigated equatorial plasma bubbles (EPBs) over South America during this geomagnetic storm using ground-based Global Navigation Satellite System (GNSS) rate of total electron content index (ROTI) and Global-scale Observations of the Limb and Disk (GOLD) satellite oxygen atom (OI) 135.6-nm radiance wavelength data. The analysis revealed that the EPBs observed in South America lasted for an unusually long duration of approximately 14 h, from around 23:00 UT (18:00 LT) on October 10 to about 14:00 UT (9:00 LT) on October 11. In addition, these super EPBs extended over a wide latitude range, reaching approximately 35°N and down to 50°S, gradually forming an inverted C-shaped pattern. The observed characteristics of the EPBs are likely associated with changes in solar wind parameters and the effects of the prompt penetration electric field (PPEF).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super Equatorial Plasma Bubbles Observed Over South America During the October 10 and 11, 2024 Strong Geomagnetic Storm\",\"authors\":\"Yumei Li;Hong Zhang;Fan Xu;Qiong Ding;Long Tang\",\"doi\":\"10.1109/LGRS.2025.3603418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On October 10, 2024, the second most intense geomagnetic storm of solar cycle 25 to date took place. This storm was triggered by multiple coronal mass ejections (CMEs) that arrived at Earth from October 7 to 9, causing significant geomagnetic disturbances. The geomagnetic Kp index peaked at its highest level (Kp = 9), indicating a red alert status. This study investigated equatorial plasma bubbles (EPBs) over South America during this geomagnetic storm using ground-based Global Navigation Satellite System (GNSS) rate of total electron content index (ROTI) and Global-scale Observations of the Limb and Disk (GOLD) satellite oxygen atom (OI) 135.6-nm radiance wavelength data. The analysis revealed that the EPBs observed in South America lasted for an unusually long duration of approximately 14 h, from around 23:00 UT (18:00 LT) on October 10 to about 14:00 UT (9:00 LT) on October 11. In addition, these super EPBs extended over a wide latitude range, reaching approximately 35°N and down to 50°S, gradually forming an inverted C-shaped pattern. The observed characteristics of the EPBs are likely associated with changes in solar wind parameters and the effects of the prompt penetration electric field (PPEF).\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11142791/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11142791/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
2024年10月10日,第25太阳活动周期中第二强烈的地磁风暴发生了。这场风暴是由10月7日至9日到达地球的多次日冕物质抛射(cme)引发的,造成了严重的地磁干扰。地磁Kp指数达到最高值(Kp = 9),进入红色警戒状态。利用地面导航卫星系统(GNSS)总电子含量指数(ROTI)和全球尺度观测卫星(GOLD)氧原子(OI) 135.6 nm辐射波长数据,研究了这次地磁风暴期间南美洲赤道等离子体气泡(EPBs)。分析显示,在南美洲观测到的EPBs持续了大约14小时的异常长时间,从10月10日23:00 UT (18:00 LT)到10月11日14:00 UT (9:00 LT)。此外,这些超级epb在很宽的纬度范围内延伸,达到约35°N,低至50°S,逐渐形成倒c形图案。epb的观测特征可能与太阳风参数的变化和提示穿透电场(PPEF)的影响有关。
Super Equatorial Plasma Bubbles Observed Over South America During the October 10 and 11, 2024 Strong Geomagnetic Storm
On October 10, 2024, the second most intense geomagnetic storm of solar cycle 25 to date took place. This storm was triggered by multiple coronal mass ejections (CMEs) that arrived at Earth from October 7 to 9, causing significant geomagnetic disturbances. The geomagnetic Kp index peaked at its highest level (Kp = 9), indicating a red alert status. This study investigated equatorial plasma bubbles (EPBs) over South America during this geomagnetic storm using ground-based Global Navigation Satellite System (GNSS) rate of total electron content index (ROTI) and Global-scale Observations of the Limb and Disk (GOLD) satellite oxygen atom (OI) 135.6-nm radiance wavelength data. The analysis revealed that the EPBs observed in South America lasted for an unusually long duration of approximately 14 h, from around 23:00 UT (18:00 LT) on October 10 to about 14:00 UT (9:00 LT) on October 11. In addition, these super EPBs extended over a wide latitude range, reaching approximately 35°N and down to 50°S, gradually forming an inverted C-shaped pattern. The observed characteristics of the EPBs are likely associated with changes in solar wind parameters and the effects of the prompt penetration electric field (PPEF).