从聚类到分类:使用高斯混合模型的分类方法的不确定性分析

ce/papers Pub Date : 2025-09-05 DOI:10.1002/cepa.3346
Nils Soeren Krause
{"title":"从聚类到分类:使用高斯混合模型的分类方法的不确定性分析","authors":"Nils Soeren Krause","doi":"10.1002/cepa.3346","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a systematic pipeline for the segmentation of LiDAR data. The LiDAR data is specifically acquired using the LiDAR sensor of a BLK2GO and stored in a PLY format. The presented pipeline uses common post-processing steps for point cloud processing. First, a RANSAC algorithm is used to remove the indoor point cloud scene from the walls, using plane detection for dominant structures. Subsequently, the indoor scene is clustered by a DBSCAN algorithm. The clustered indoor scene objects are then briefly classified manually. After the manual step, the pipeline is using a Gaussian Mixture Model (GMM). The GMM classifies the objects based on their probabilistic distributions of the geometric dimension. Preliminary results indicate that this workflow enables an efficient object detection with a minimal manual effort. Furthermore, the paper investigates uncertainties of process steps and gives new approaches for dealing with the uncertainties. This pipeline aims to establish a practical approach for generating input data for Scan2BIM applications.</p>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"8 3-4","pages":"360-367"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3346","citationCount":"0","resultStr":"{\"title\":\"From clustering to classification: An uncertainty analysis of a classification approach using a Gaussian mixture model\",\"authors\":\"Nils Soeren Krause\",\"doi\":\"10.1002/cepa.3346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a systematic pipeline for the segmentation of LiDAR data. The LiDAR data is specifically acquired using the LiDAR sensor of a BLK2GO and stored in a PLY format. The presented pipeline uses common post-processing steps for point cloud processing. First, a RANSAC algorithm is used to remove the indoor point cloud scene from the walls, using plane detection for dominant structures. Subsequently, the indoor scene is clustered by a DBSCAN algorithm. The clustered indoor scene objects are then briefly classified manually. After the manual step, the pipeline is using a Gaussian Mixture Model (GMM). The GMM classifies the objects based on their probabilistic distributions of the geometric dimension. Preliminary results indicate that this workflow enables an efficient object detection with a minimal manual effort. Furthermore, the paper investigates uncertainties of process steps and gives new approaches for dealing with the uncertainties. This pipeline aims to establish a practical approach for generating input data for Scan2BIM applications.</p>\",\"PeriodicalId\":100223,\"journal\":{\"name\":\"ce/papers\",\"volume\":\"8 3-4\",\"pages\":\"360-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cepa.3346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ce/papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种系统的激光雷达数据分割流水线。激光雷达数据是使用BLK2GO的激光雷达传感器专门获取的,并以PLY格式存储。所提出的管道使用通用的后处理步骤进行点云处理。首先,使用RANSAC算法从墙壁上去除室内点云场景,对优势结构使用平面检测。随后,采用DBSCAN算法对室内场景进行聚类。然后对聚类的室内场景对象进行人工简单分类。在手动步骤之后,管道使用高斯混合模型(GMM)。GMM根据物体几何尺寸的概率分布对其进行分类。初步结果表明,该工作流程能够以最小的人工工作量实现高效的目标检测。进一步研究了工艺步骤的不确定性,提出了处理不确定性的新方法。该管道旨在为Scan2BIM应用程序生成输入数据建立一种实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From clustering to classification: An uncertainty analysis of a classification approach using a Gaussian mixture model

This paper presents a systematic pipeline for the segmentation of LiDAR data. The LiDAR data is specifically acquired using the LiDAR sensor of a BLK2GO and stored in a PLY format. The presented pipeline uses common post-processing steps for point cloud processing. First, a RANSAC algorithm is used to remove the indoor point cloud scene from the walls, using plane detection for dominant structures. Subsequently, the indoor scene is clustered by a DBSCAN algorithm. The clustered indoor scene objects are then briefly classified manually. After the manual step, the pipeline is using a Gaussian Mixture Model (GMM). The GMM classifies the objects based on their probabilistic distributions of the geometric dimension. Preliminary results indicate that this workflow enables an efficient object detection with a minimal manual effort. Furthermore, the paper investigates uncertainties of process steps and gives new approaches for dealing with the uncertainties. This pipeline aims to establish a practical approach for generating input data for Scan2BIM applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信