从先验概率、历史结构设计和贝叶斯网络推断全局和详细的结构建筑变量

ce/papers Pub Date : 2025-09-05 DOI:10.1002/cepa.3356
Lombe Mutale, Ramon Hingorani, Jochen Köhler
{"title":"从先验概率、历史结构设计和贝叶斯网络推断全局和详细的结构建筑变量","authors":"Lombe Mutale,&nbsp;Ramon Hingorani,&nbsp;Jochen Köhler","doi":"10.1002/cepa.3356","DOIUrl":null,"url":null,"abstract":"<p>The lack of data on existing buildings inhibits circular economy strategies, such as reuse. To overcome this issue, the current study infers unknowns using Bayesian Networks (BNs), which are directed acyclic graphs of probabilistic variables. The study proposes two types of BNs to infer probabilities of variables of existing buildings. The first BN is based on conditional probability tables and associations between global building variables. The second builds on this with detailed structural load variables via engineering equations from historical structural design codes. The BNs generated probabilistic estimates which reflect uncertainty in the input data. With increased evidence, the BNs' estimates were updated, thereby reducing uncertainty of inferred building variables. Urban planners can use the tool to estimate building variables without physically measuring existing buildings, thereby enabling circular construction planning. Future studies may expand the BN to include more structural design equations to infer additional structural building variables.</p>","PeriodicalId":100223,"journal":{"name":"ce/papers","volume":"8 3-4","pages":"316-323"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring global and detailed structural building variables from prior probabilities, historical structural design and Bayesian Networks\",\"authors\":\"Lombe Mutale,&nbsp;Ramon Hingorani,&nbsp;Jochen Köhler\",\"doi\":\"10.1002/cepa.3356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The lack of data on existing buildings inhibits circular economy strategies, such as reuse. To overcome this issue, the current study infers unknowns using Bayesian Networks (BNs), which are directed acyclic graphs of probabilistic variables. The study proposes two types of BNs to infer probabilities of variables of existing buildings. The first BN is based on conditional probability tables and associations between global building variables. The second builds on this with detailed structural load variables via engineering equations from historical structural design codes. The BNs generated probabilistic estimates which reflect uncertainty in the input data. With increased evidence, the BNs' estimates were updated, thereby reducing uncertainty of inferred building variables. Urban planners can use the tool to estimate building variables without physically measuring existing buildings, thereby enabling circular construction planning. Future studies may expand the BN to include more structural design equations to infer additional structural building variables.</p>\",\"PeriodicalId\":100223,\"journal\":{\"name\":\"ce/papers\",\"volume\":\"8 3-4\",\"pages\":\"316-323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ce/papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ce/papers","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cepa.3356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有建筑数据的缺乏阻碍了循环经济战略,如再利用。为了克服这个问题,目前的研究使用贝叶斯网络(BNs)来推断未知数,这是概率变量的有向无环图。该研究提出了两种类型的bn来推断现有建筑变量的概率。第一个BN基于条件概率表和全局建筑变量之间的关联。第二种方法是在此基础上,通过历史结构设计规范中的工程方程详细分析结构荷载变量。bp生成的概率估计反映了输入数据的不确定性。随着证据的增加,对国家统计局的估计进行了更新,从而减少了推断建筑变量的不确定性。城市规划者可以使用该工具来估计建筑变量,而无需实际测量现有建筑,从而实现循环建筑规划。未来的研究可能会扩展BN,包括更多的结构设计方程,以推断额外的结构建筑变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring global and detailed structural building variables from prior probabilities, historical structural design and Bayesian Networks

The lack of data on existing buildings inhibits circular economy strategies, such as reuse. To overcome this issue, the current study infers unknowns using Bayesian Networks (BNs), which are directed acyclic graphs of probabilistic variables. The study proposes two types of BNs to infer probabilities of variables of existing buildings. The first BN is based on conditional probability tables and associations between global building variables. The second builds on this with detailed structural load variables via engineering equations from historical structural design codes. The BNs generated probabilistic estimates which reflect uncertainty in the input data. With increased evidence, the BNs' estimates were updated, thereby reducing uncertainty of inferred building variables. Urban planners can use the tool to estimate building variables without physically measuring existing buildings, thereby enabling circular construction planning. Future studies may expand the BN to include more structural design equations to infer additional structural building variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信