MUSE-Rec:可解释的多行为社交电子商务推荐与集成链接预测

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gehad Abdullah Amran , Xianneng Li , Ali A. AL-Bakhrani
{"title":"MUSE-Rec:可解释的多行为社交电子商务推荐与集成链接预测","authors":"Gehad Abdullah Amran ,&nbsp;Xianneng Li ,&nbsp;Ali A. AL-Bakhrani","doi":"10.1016/j.ipm.2025.104355","DOIUrl":null,"url":null,"abstract":"<div><div>Social e-commerce platforms create complex ecosystems where user behaviors, social relationships, and temporal dynamics are closely interconnected and evolve continuously over time. Current recommendation approaches face critical limitations: they struggle to model diverse user behaviors simultaneously, fail to predict evolving social connections, and lack interpretable explanations. Unlike existing methods that treat multi-behavioral modeling, social influence, and temporal dynamics as separate optimization problems, this work introduces MUSE-Rec, a unified Multi-behavioral Social E-commerce Recommendation Framework. MUSE-Rec integrates these interconnected components through an innovative graph neural network architecture. Integrating link prediction is crucial because predicting future social connections enables the system to anticipate how user preferences will evolve, improving recommendation accuracy and timing. Our framework advances recommendation systems theory by demonstrating that joint optimization of behavioral patterns, social dynamics, and temporal evolution achieves superior performance compared to component-wise approaches. This establishes new theoretical foundations for integrated social-temporal-behavioral modeling. MUSE-Rec introduces three key innovations: (1) a Multi-Graph Attention Network layer modeling diverse user-item interactions while predicting future social connections, achieving behavior correlation coefficient of 0.73 and link prediction AUC of 0.892; (2) an adaptive social connection aggregation mechanism capturing dynamic social influence patterns; and (3) a temporal graph network layer incorporating behavior-specific temporal dynamics. Comprehensive experiments on Yelp and Amazon Electronics datasets demonstrate superior performance. MUSE-Rec achieves NDCG@10 of 0.768 on Yelp and 0.742 on Amazon. The explainability module achieves high fidelity scores of 0.823 and 0.805 respectively, providing transparent behavior-specific explanations. MUSE-Rec enables e-commerce platforms to deploy more effective recommendation systems with 28% computational efficiency improvement while enhancing user trust.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 2","pages":"Article 104355"},"PeriodicalIF":6.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MUSE-Rec: Explainable multi-behavioral social e-commerce recommendation with integrated link prediction\",\"authors\":\"Gehad Abdullah Amran ,&nbsp;Xianneng Li ,&nbsp;Ali A. AL-Bakhrani\",\"doi\":\"10.1016/j.ipm.2025.104355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Social e-commerce platforms create complex ecosystems where user behaviors, social relationships, and temporal dynamics are closely interconnected and evolve continuously over time. Current recommendation approaches face critical limitations: they struggle to model diverse user behaviors simultaneously, fail to predict evolving social connections, and lack interpretable explanations. Unlike existing methods that treat multi-behavioral modeling, social influence, and temporal dynamics as separate optimization problems, this work introduces MUSE-Rec, a unified Multi-behavioral Social E-commerce Recommendation Framework. MUSE-Rec integrates these interconnected components through an innovative graph neural network architecture. Integrating link prediction is crucial because predicting future social connections enables the system to anticipate how user preferences will evolve, improving recommendation accuracy and timing. Our framework advances recommendation systems theory by demonstrating that joint optimization of behavioral patterns, social dynamics, and temporal evolution achieves superior performance compared to component-wise approaches. This establishes new theoretical foundations for integrated social-temporal-behavioral modeling. MUSE-Rec introduces three key innovations: (1) a Multi-Graph Attention Network layer modeling diverse user-item interactions while predicting future social connections, achieving behavior correlation coefficient of 0.73 and link prediction AUC of 0.892; (2) an adaptive social connection aggregation mechanism capturing dynamic social influence patterns; and (3) a temporal graph network layer incorporating behavior-specific temporal dynamics. Comprehensive experiments on Yelp and Amazon Electronics datasets demonstrate superior performance. MUSE-Rec achieves NDCG@10 of 0.768 on Yelp and 0.742 on Amazon. The explainability module achieves high fidelity scores of 0.823 and 0.805 respectively, providing transparent behavior-specific explanations. MUSE-Rec enables e-commerce platforms to deploy more effective recommendation systems with 28% computational efficiency improvement while enhancing user trust.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 2\",\"pages\":\"Article 104355\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002961\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002961","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

社交电商平台创造了复杂的生态系统,其中用户行为、社会关系和时间动态紧密相连,并随着时间的推移不断演变。当前的推荐方法面临着严重的限制:它们难以同时模拟不同的用户行为,无法预测不断发展的社会关系,并且缺乏可解释的解释。与将多行为建模、社会影响和时间动态视为单独优化问题的现有方法不同,这项工作引入了MUSE-Rec,一个统一的多行为社交电子商务推荐框架。MUSE-Rec通过创新的图神经网络架构集成了这些相互连接的组件。整合链接预测是至关重要的,因为预测未来的社会关系使系统能够预测用户偏好的演变,提高推荐的准确性和时间。我们的框架通过证明行为模式、社会动态和时间进化的联合优化与组件智能方法相比实现了卓越的性能,从而推进了推荐系统理论。这为社会-时间-行为综合建模建立了新的理论基础。MUSE-Rec引入了三个关键创新:(1)多图注意网络层在预测未来社会联系的同时建模了不同的用户-物品交互,实现了0.73的行为相关系数和0.892的链接预测AUC;(2)捕捉动态社会影响模式的适应性社会联系聚合机制;(3)包含特定行为的时间动态的时间图网络层。在Yelp和Amazon Electronics数据集上的综合实验证明了优越的性能。MUSE-Rec在Yelp上达到NDCG@10 0.768,在亚马逊上达到0.742。可解释性模块分别达到了0.823和0.805的高保真度,提供了透明的特定行为解释。MUSE-Rec使电子商务平台能够部署更有效的推荐系统,计算效率提高28%,同时增强用户信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MUSE-Rec: Explainable multi-behavioral social e-commerce recommendation with integrated link prediction
Social e-commerce platforms create complex ecosystems where user behaviors, social relationships, and temporal dynamics are closely interconnected and evolve continuously over time. Current recommendation approaches face critical limitations: they struggle to model diverse user behaviors simultaneously, fail to predict evolving social connections, and lack interpretable explanations. Unlike existing methods that treat multi-behavioral modeling, social influence, and temporal dynamics as separate optimization problems, this work introduces MUSE-Rec, a unified Multi-behavioral Social E-commerce Recommendation Framework. MUSE-Rec integrates these interconnected components through an innovative graph neural network architecture. Integrating link prediction is crucial because predicting future social connections enables the system to anticipate how user preferences will evolve, improving recommendation accuracy and timing. Our framework advances recommendation systems theory by demonstrating that joint optimization of behavioral patterns, social dynamics, and temporal evolution achieves superior performance compared to component-wise approaches. This establishes new theoretical foundations for integrated social-temporal-behavioral modeling. MUSE-Rec introduces three key innovations: (1) a Multi-Graph Attention Network layer modeling diverse user-item interactions while predicting future social connections, achieving behavior correlation coefficient of 0.73 and link prediction AUC of 0.892; (2) an adaptive social connection aggregation mechanism capturing dynamic social influence patterns; and (3) a temporal graph network layer incorporating behavior-specific temporal dynamics. Comprehensive experiments on Yelp and Amazon Electronics datasets demonstrate superior performance. MUSE-Rec achieves NDCG@10 of 0.768 on Yelp and 0.742 on Amazon. The explainability module achieves high fidelity scores of 0.823 and 0.805 respectively, providing transparent behavior-specific explanations. MUSE-Rec enables e-commerce platforms to deploy more effective recommendation systems with 28% computational efficiency improvement while enhancing user trust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信