{"title":"比尔的语言学和化学:开启新的研究视角的调查","authors":"Nicola Cavallini , Francesco Savorani , Rasmus Bro , Marina Cocchi","doi":"10.1016/j.chemolab.2025.105521","DOIUrl":null,"url":null,"abstract":"<div><div>In the last two decades, interest in food production and consumption has progressively grown, alongside the booming popularity of craft beer, fueled by micro-breweries and home brewing. Beer is a complex mixture of compounds — from carbohydrates to proteins and ethanol — shaped by the recipe, ingredients, and production process. Less obvious is that the human tongue, in synergy with the oral cavity and nose, acts as a powerful sensor array. Tasting experiences can be viewed as “analytical sessions”, where sensory signals processed by the brain determine not only if the beer is appreciated but also which tastes and flavours are perceived.</div><div>In our study, we investigated the connection between the “objective” chemical profile of beer and the “subjective” sensory descriptions from user reviews. We analysed 88 beers using near-infrared (NIR), visible, and nuclear magnetic resonance (NMR) spectroscopy, pairing them with text reviews processed through natural language processing (NLP) tools and converted into numerical data via a bag-of-words approach. Principal Component Analysis-Generalized Canonical Analysis (PCA-GCA) revealed correlations between chemical signals and topics like “hops,” “brown colour,” and “booze”. NMR data showed the strongest correlations, especially for hops-related terms, while visible spectra linked to colour descriptors. Automated topic extraction often performed comparably to manual term selection, suggesting potential for scalable studies. Despite limitations like dataset size and beer variety, this approach shows promise for aligning chemical composition with sensory perception, with applications for product development and broader food analysis.</div><div>A novel approach integrates text corpora with analytical data through chemometrics, linking language complexity to instrumental responses. Results showed strong correlations, like NMR signals with hops-related terms and visible spectra with beer colour. This previously unexplored connection opens the door to designing food products tailored to consumer preferences. The approach is broadly applicable, from food science to medical diagnosis or aligning expert opinions with factual data.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"267 ","pages":"Article 105521"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beer's linguistics and chemistry: an investigation opening new research perspectives\",\"authors\":\"Nicola Cavallini , Francesco Savorani , Rasmus Bro , Marina Cocchi\",\"doi\":\"10.1016/j.chemolab.2025.105521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the last two decades, interest in food production and consumption has progressively grown, alongside the booming popularity of craft beer, fueled by micro-breweries and home brewing. Beer is a complex mixture of compounds — from carbohydrates to proteins and ethanol — shaped by the recipe, ingredients, and production process. Less obvious is that the human tongue, in synergy with the oral cavity and nose, acts as a powerful sensor array. Tasting experiences can be viewed as “analytical sessions”, where sensory signals processed by the brain determine not only if the beer is appreciated but also which tastes and flavours are perceived.</div><div>In our study, we investigated the connection between the “objective” chemical profile of beer and the “subjective” sensory descriptions from user reviews. We analysed 88 beers using near-infrared (NIR), visible, and nuclear magnetic resonance (NMR) spectroscopy, pairing them with text reviews processed through natural language processing (NLP) tools and converted into numerical data via a bag-of-words approach. Principal Component Analysis-Generalized Canonical Analysis (PCA-GCA) revealed correlations between chemical signals and topics like “hops,” “brown colour,” and “booze”. NMR data showed the strongest correlations, especially for hops-related terms, while visible spectra linked to colour descriptors. Automated topic extraction often performed comparably to manual term selection, suggesting potential for scalable studies. Despite limitations like dataset size and beer variety, this approach shows promise for aligning chemical composition with sensory perception, with applications for product development and broader food analysis.</div><div>A novel approach integrates text corpora with analytical data through chemometrics, linking language complexity to instrumental responses. Results showed strong correlations, like NMR signals with hops-related terms and visible spectra with beer colour. This previously unexplored connection opens the door to designing food products tailored to consumer preferences. The approach is broadly applicable, from food science to medical diagnosis or aligning expert opinions with factual data.</div></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"267 \",\"pages\":\"Article 105521\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743925002060\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925002060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Beer's linguistics and chemistry: an investigation opening new research perspectives
In the last two decades, interest in food production and consumption has progressively grown, alongside the booming popularity of craft beer, fueled by micro-breweries and home brewing. Beer is a complex mixture of compounds — from carbohydrates to proteins and ethanol — shaped by the recipe, ingredients, and production process. Less obvious is that the human tongue, in synergy with the oral cavity and nose, acts as a powerful sensor array. Tasting experiences can be viewed as “analytical sessions”, where sensory signals processed by the brain determine not only if the beer is appreciated but also which tastes and flavours are perceived.
In our study, we investigated the connection between the “objective” chemical profile of beer and the “subjective” sensory descriptions from user reviews. We analysed 88 beers using near-infrared (NIR), visible, and nuclear magnetic resonance (NMR) spectroscopy, pairing them with text reviews processed through natural language processing (NLP) tools and converted into numerical data via a bag-of-words approach. Principal Component Analysis-Generalized Canonical Analysis (PCA-GCA) revealed correlations between chemical signals and topics like “hops,” “brown colour,” and “booze”. NMR data showed the strongest correlations, especially for hops-related terms, while visible spectra linked to colour descriptors. Automated topic extraction often performed comparably to manual term selection, suggesting potential for scalable studies. Despite limitations like dataset size and beer variety, this approach shows promise for aligning chemical composition with sensory perception, with applications for product development and broader food analysis.
A novel approach integrates text corpora with analytical data through chemometrics, linking language complexity to instrumental responses. Results showed strong correlations, like NMR signals with hops-related terms and visible spectra with beer colour. This previously unexplored connection opens the door to designing food products tailored to consumer preferences. The approach is broadly applicable, from food science to medical diagnosis or aligning expert opinions with factual data.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.