{"title":"用层次矩阵求解聚类矩松弛","authors":"Yi Wang , Rizheng Huang , Yuehaw Khoo","doi":"10.1016/j.jcp.2025.114331","DOIUrl":null,"url":null,"abstract":"<div><div>Convex relaxation methods are powerful tools for studying the lowest energy of many-body problems. By relaxing the representability conditions for marginals to a set of local constraints, along with a global semidefinite constraint, a polynomial-time solvable semidefinite program (SDP) that provides a lower bound for the energy can be derived. In this paper, we propose accelerating the solution of such an SDP relaxation by imposing a hierarchical structure on the positive semidefinite (PSD) primal and dual variables. Furthermore, these matrices can be updated efficiently using the algebra of the compressed representations within an augmented Lagrangian method. We achieve quadratic and even near-linear time per-iteration complexity. Through experimentation on the quantum transverse field Ising model, we showcase the capability of our approach to provide a sufficiently accurate lower bound for the exact ground-state energy.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114331"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving cluster moment relaxation with hierarchical matrix\",\"authors\":\"Yi Wang , Rizheng Huang , Yuehaw Khoo\",\"doi\":\"10.1016/j.jcp.2025.114331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Convex relaxation methods are powerful tools for studying the lowest energy of many-body problems. By relaxing the representability conditions for marginals to a set of local constraints, along with a global semidefinite constraint, a polynomial-time solvable semidefinite program (SDP) that provides a lower bound for the energy can be derived. In this paper, we propose accelerating the solution of such an SDP relaxation by imposing a hierarchical structure on the positive semidefinite (PSD) primal and dual variables. Furthermore, these matrices can be updated efficiently using the algebra of the compressed representations within an augmented Lagrangian method. We achieve quadratic and even near-linear time per-iteration complexity. Through experimentation on the quantum transverse field Ising model, we showcase the capability of our approach to provide a sufficiently accurate lower bound for the exact ground-state energy.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"541 \",\"pages\":\"Article 114331\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006138\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006138","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Solving cluster moment relaxation with hierarchical matrix
Convex relaxation methods are powerful tools for studying the lowest energy of many-body problems. By relaxing the representability conditions for marginals to a set of local constraints, along with a global semidefinite constraint, a polynomial-time solvable semidefinite program (SDP) that provides a lower bound for the energy can be derived. In this paper, we propose accelerating the solution of such an SDP relaxation by imposing a hierarchical structure on the positive semidefinite (PSD) primal and dual variables. Furthermore, these matrices can be updated efficiently using the algebra of the compressed representations within an augmented Lagrangian method. We achieve quadratic and even near-linear time per-iteration complexity. Through experimentation on the quantum transverse field Ising model, we showcase the capability of our approach to provide a sufficiently accurate lower bound for the exact ground-state energy.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.