具有厚尾lsamvy测度的高维偏微分方程的深度学习

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kamran Arif , Guojiang Xi , Heng Wang , Weihua Deng
{"title":"具有厚尾lsamvy测度的高维偏微分方程的深度学习","authors":"Kamran Arif ,&nbsp;Guojiang Xi ,&nbsp;Heng Wang ,&nbsp;Weihua Deng","doi":"10.1016/j.jcp.2025.114327","DOIUrl":null,"url":null,"abstract":"<div><div>The partial differential equations (PDEs) for jump process with Lévy measure have wide applications. When the measure has fat tails, it will bring big challenges for both computational cost and accuracy. In this work, we develop a deep learning method for high-dimensional PDEs related to fat-tailed Lévy measure, which can be naturally extended to the general case. Building on the theory of backward stochastic differential equations for Lévy processes, our deep learning method avoids the need for neural network differentiation and introduces a novel technique to address the singularity of fat-tailed Lévy measures. The developed method is used to solve four kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the advective diffusion equation with fractional Laplacian; the advective diffusion reaction equation with fractional Laplacian; and the nonlinear reaction diffusion equation with fractional Laplacian. The parameter <span><math><mi>β</mi></math></span> in fractional Laplacian is an indicator of the strength of the singularity of Lévy measure. Specifically, for <span><math><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, the model describes super-ballistic diffusion; while for <span><math><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>, it characterizes super-diffusion. In addition, we experimentally verify that the developed algorithm can be easily extended to solve fractional PDEs with finite general Lévy measures. Our method achieves a relative error of <span><math><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span> for low-dimensional problems and <span><math><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for high-dimensional ones. We also investigate three factors that influence the algorithm’s performance: the number of hidden layers; the number of Monte Carlo samples; and the choice of activation functions. Furthermore, we test the efficiency of the algorithm in solving problems in 3D, 10D, 20D, 50D, and 100D. Our numerical results demonstrate that the algorithm achieves excellent performance with deeper hidden layers, a larger number of Monte Carlo samples, and the Softsign activation function.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"541 ","pages":"Article 114327"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for high-dimensional PDEs with fat-tailed Lévy measure\",\"authors\":\"Kamran Arif ,&nbsp;Guojiang Xi ,&nbsp;Heng Wang ,&nbsp;Weihua Deng\",\"doi\":\"10.1016/j.jcp.2025.114327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The partial differential equations (PDEs) for jump process with Lévy measure have wide applications. When the measure has fat tails, it will bring big challenges for both computational cost and accuracy. In this work, we develop a deep learning method for high-dimensional PDEs related to fat-tailed Lévy measure, which can be naturally extended to the general case. Building on the theory of backward stochastic differential equations for Lévy processes, our deep learning method avoids the need for neural network differentiation and introduces a novel technique to address the singularity of fat-tailed Lévy measures. The developed method is used to solve four kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the advective diffusion equation with fractional Laplacian; the advective diffusion reaction equation with fractional Laplacian; and the nonlinear reaction diffusion equation with fractional Laplacian. The parameter <span><math><mi>β</mi></math></span> in fractional Laplacian is an indicator of the strength of the singularity of Lévy measure. Specifically, for <span><math><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>, the model describes super-ballistic diffusion; while for <span><math><mrow><mi>β</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></math></span>, it characterizes super-diffusion. In addition, we experimentally verify that the developed algorithm can be easily extended to solve fractional PDEs with finite general Lévy measures. Our method achieves a relative error of <span><math><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></mrow></math></span> for low-dimensional problems and <span><math><mrow><mi>O</mi><mo>(</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for high-dimensional ones. We also investigate three factors that influence the algorithm’s performance: the number of hidden layers; the number of Monte Carlo samples; and the choice of activation functions. Furthermore, we test the efficiency of the algorithm in solving problems in 3D, 10D, 20D, 50D, and 100D. Our numerical results demonstrate that the algorithm achieves excellent performance with deeper hidden layers, a larger number of Monte Carlo samples, and the Softsign activation function.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"541 \",\"pages\":\"Article 114327\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125006096\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006096","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

具有lsamvy测度的跳跃过程的偏微分方程具有广泛的应用。当测量有肥尾时,将给计算成本和准确性带来巨大的挑战。在这项工作中,我们开发了一种与厚尾lsamvy测度相关的高维偏微分方程的深度学习方法,该方法可以自然地扩展到一般情况。基于lsamvy过程的倒向随机微分方程理论,我们的深度学习方法避免了对神经网络微分的需要,并引入了一种新的技术来解决lsamvy肥尾度量的奇异性。该方法用于求解四种高维偏微分方程:分数阶拉普拉斯扩散方程;具有分数阶拉普拉斯的对流扩散方程;具有分数阶拉普拉斯的平流扩散反应方程;分数阶拉普拉斯非线性反应扩散方程。分数阶拉普拉斯函数中的参数β表示lsamvy测度的奇异性强度。具体来说,对于β∈(0,1),模型描述了超弹道扩散;而对于β∈(1,2),则表征为超扩散。此外,我们还通过实验验证了所开发的算法可以很容易地扩展到求解具有有限一般lsamvy测度的分数阶偏微分方程。我们的方法对低维问题的相对误差为0(10−3),对高维问题的相对误差为0(10−2)。我们还研究了影响算法性能的三个因素:隐藏层的数量;蒙特卡罗样本数;以及激活函数的选择。此外,我们还测试了该算法在3D、10D、20D、50D和100D下解决问题的效率。数值结果表明,该算法具有较深的隐藏层、较大的蒙特卡罗样本数量和Softsign激活函数,具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for high-dimensional PDEs with fat-tailed Lévy measure
The partial differential equations (PDEs) for jump process with Lévy measure have wide applications. When the measure has fat tails, it will bring big challenges for both computational cost and accuracy. In this work, we develop a deep learning method for high-dimensional PDEs related to fat-tailed Lévy measure, which can be naturally extended to the general case. Building on the theory of backward stochastic differential equations for Lévy processes, our deep learning method avoids the need for neural network differentiation and introduces a novel technique to address the singularity of fat-tailed Lévy measures. The developed method is used to solve four kinds of high-dimensional PDEs: the diffusion equation with fractional Laplacian; the advective diffusion equation with fractional Laplacian; the advective diffusion reaction equation with fractional Laplacian; and the nonlinear reaction diffusion equation with fractional Laplacian. The parameter β in fractional Laplacian is an indicator of the strength of the singularity of Lévy measure. Specifically, for β(0,1), the model describes super-ballistic diffusion; while for β(1,2), it characterizes super-diffusion. In addition, we experimentally verify that the developed algorithm can be easily extended to solve fractional PDEs with finite general Lévy measures. Our method achieves a relative error of O(103) for low-dimensional problems and O(102) for high-dimensional ones. We also investigate three factors that influence the algorithm’s performance: the number of hidden layers; the number of Monte Carlo samples; and the choice of activation functions. Furthermore, we test the efficiency of the algorithm in solving problems in 3D, 10D, 20D, 50D, and 100D. Our numerical results demonstrate that the algorithm achieves excellent performance with deeper hidden layers, a larger number of Monte Carlo samples, and the Softsign activation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信