{"title":"Frobenius结构和p进zeta值","authors":"Frits Beukers , Masha Vlasenko","doi":"10.1016/j.aim.2025.110512","DOIUrl":null,"url":null,"abstract":"<div><div>For differential operators of Calabi-Yau type, Candelas, De la Ossa and van Straten conjecture the appearance of <em>p</em>-adic zeta values in the matrix entries of their <em>p</em>-adic Frobenius structure expressed in the standard basis of solutions near a point of maximal unipotent local monodromy. We prove that this phenomenon holds for simplicial and hyperoctahedral families of Calabi-Yau hypersurfaces in <em>n</em> dimensions, in which case the limits of the Frobenius matrix entries are rational linear combinations of products of <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"480 ","pages":"Article 110512"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius structure and p-adic zeta values\",\"authors\":\"Frits Beukers , Masha Vlasenko\",\"doi\":\"10.1016/j.aim.2025.110512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For differential operators of Calabi-Yau type, Candelas, De la Ossa and van Straten conjecture the appearance of <em>p</em>-adic zeta values in the matrix entries of their <em>p</em>-adic Frobenius structure expressed in the standard basis of solutions near a point of maximal unipotent local monodromy. We prove that this phenomenon holds for simplicial and hyperoctahedral families of Calabi-Yau hypersurfaces in <em>n</em> dimensions, in which case the limits of the Frobenius matrix entries are rational linear combinations of products of <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span> with <span><math><mn>1</mn><mo><</mo><mi>k</mi><mo><</mo><mi>n</mi></math></span>.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"480 \",\"pages\":\"Article 110512\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004104\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004104","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于Calabi-Yau型的微分算子,Candelas、De la Ossa和van Straten猜想在其p-adic Frobenius结构的矩阵项中p-adic zeta值的出现,该矩阵项用解的标准基表示在最大单幂局部单点附近。我们证明了这一现象适用于n维的Calabi-Yau超曲面的简单族和高八面体族,在这种情况下,Frobenius矩阵项的极限是ζp(k)与1<;k<;n乘积的有理线性组合。
For differential operators of Calabi-Yau type, Candelas, De la Ossa and van Straten conjecture the appearance of p-adic zeta values in the matrix entries of their p-adic Frobenius structure expressed in the standard basis of solutions near a point of maximal unipotent local monodromy. We prove that this phenomenon holds for simplicial and hyperoctahedral families of Calabi-Yau hypersurfaces in n dimensions, in which case the limits of the Frobenius matrix entries are rational linear combinations of products of with .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.