高维视觉数据的参数化低秩正则化

IF 9.3 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool
{"title":"高维视觉数据的参数化低秩正则化","authors":"Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool","doi":"10.1007/s11263-025-02569-2","DOIUrl":null,"url":null,"abstract":"<p>Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized Low-Rank Regularizer for High-dimensional Visual Data\",\"authors\":\"Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool\",\"doi\":\"10.1007/s11263-025-02569-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.\\n</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02569-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02569-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

因子分解模型和核规范是表征低秩先验的两种主要方法,但在严重退化和缺乏泛化能力的情况下,难以准确检索低秩数据。为了缓解这些限制,我们提出了一种参数化低秩正则化(Parameterized Low-Rank Regularizer, PLRR),它通过矩阵分解来建模低秩视觉数据,利用神经网络来参数化因子矩阵,其可行域本质上是受限的。这种方法可以解释为对因子矩阵施加自动学习惩罚。更重要的是,编码在网络参数中的知识增强了泛化。作为一种多用途的低秩建模工具,PLRR在视频前景提取、高光谱图像去噪、高光谱图像绘制、多时间多光谱图像去噪以及MSI引导下的盲HSI超分辨率等反问题中表现出优异的性能。更重要的是,对于具有不同退化、时间变化和场景背景的图像,PLRR显示了强大的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized Low-Rank Regularizer for High-dimensional Visual Data

Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信