Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool
{"title":"高维视觉数据的参数化低秩正则化","authors":"Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool","doi":"10.1007/s11263-025-02569-2","DOIUrl":null,"url":null,"abstract":"<p>Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized Low-Rank Regularizer for High-dimensional Visual Data\",\"authors\":\"Shuang Xu, Zixiang Zhao, Xiangyong Cao, Jiangjun Peng, Xi-Le Zhao, Deyu Meng, Yulun Zhang, Radu Timofte, Luc Van Gool\",\"doi\":\"10.1007/s11263-025-02569-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.\\n</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02569-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02569-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Parameterized Low-Rank Regularizer for High-dimensional Visual Data
Factorization models and nuclear norms, two prominent methods for characterizing the low-rank prior, encounter challenges in accurately retrieving low-rank data under severe degradation and lack generalization capabilities. To mitigate these limitations, we propose a Parameterized Low-Rank Regularizer (PLRR), which models low-rank visual data through matrix factorization by utilizing neural networks to parameterize the factor matrices, whose feasible domains are essentially constrained. This approach can be interpreted as imposing an automatically learned penalty on factor matrices. More significantly, the knowledge encoded in network parameters enhances generalization. As a versatile low-rank modeling tool, PLRR exhibits superior performance in various inverse problems, including video foreground extraction, hyperspectral image (HSI) denoising, HSI inpainting, multi-temporal multispectral image (MSI) decloud, and MSI guided blind HSI super-resolution. More significantly, PLRR demonstrates robust generalization capabilities for images with diverse degradations, temporal variations, and scene contexts.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.