A Ibáñez de Opakua, R Conde, A de Diego, M Bizkarguenaga, N Embade, S C Lu, J M Mato, O Millet
{"title":"基于代谢组学的衰老时钟。","authors":"A Ibáñez de Opakua, R Conde, A de Diego, M Bizkarguenaga, N Embade, S C Lu, J M Mato, O Millet","doi":"10.1038/s44324-025-00078-x","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health. We summarize key NMR-based models and present a new approach that combines high predictive accuracy with clinical interpretability, identifying disease-specific metabolic distortions and supporting risk stratification and early detection of accelerated aging.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"35"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408810/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic-based aging clocks.\",\"authors\":\"A Ibáñez de Opakua, R Conde, A de Diego, M Bizkarguenaga, N Embade, S C Lu, J M Mato, O Millet\",\"doi\":\"10.1038/s44324-025-00078-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health. We summarize key NMR-based models and present a new approach that combines high predictive accuracy with clinical interpretability, identifying disease-specific metabolic distortions and supporting risk stratification and early detection of accelerated aging.</p>\",\"PeriodicalId\":501710,\"journal\":{\"name\":\"npj Metabolic Health and Disease\",\"volume\":\"3 1\",\"pages\":\"35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408810/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Metabolic Health and Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44324-025-00078-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Metabolic Health and Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44324-025-00078-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular aging clocks estimate biological age from molecular biomarkers and often outperform chronological age in predicting health outcomes. Types include epigenetic, transcriptomic, proteomic, and metabolomic clocks. NMR-based metabolomic clocks provide a non-invasive, high-throughput platform to assess metabolic health. We summarize key NMR-based models and present a new approach that combines high predictive accuracy with clinical interpretability, identifying disease-specific metabolic distortions and supporting risk stratification and early detection of accelerated aging.