L110M突变对ATTR(105-115)肽组装结构和稳定性的影响:计算研究

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Prabuddha Bhattacharya, Sumit Mittal
{"title":"L110M突变对ATTR(105-115)肽组装结构和稳定性的影响:计算研究","authors":"Prabuddha Bhattacharya, Sumit Mittal","doi":"10.1002/prot.70046","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanisms driving amyloid assembly have long intrigued structural biologists, as they offer insights into systemic fibrotic changes and the dynamic behavior of transthyretin (TTR) aggregation, crucial for developing amyloid-targeted therapies. In TTR-associated amyloidosis, amyloid fibrils form via destabilization of the tetramer into dimers and monomers. While many TTR mutations have been studied, the atomistic impact of multiple mutations on amyloid transthyretin (ATTR) self-assembly remains underexplored. To the best of our knowledge, this is the first computational analysis reporting the impact of the L110M mutation on ATTR peptide aggregation. Using triplicate 1 μs all-atom molecular dynamics (MD) simulations, totaling 18 μs, the conformational dynamics of cross-β amyloid fibrils in the ATTR(105-115) segment were examined for both wild-type and L110M mutant TTR. The L110M mutation consistently enhanced the β-sheet content in all oligomers, with increases of ~1%, ~5%, and ~4% over the wild-type in the 2-, 4-, and 8-peptide systems, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations revealed higher effective binding free energy for the L110M mutant, with residue M110 contributing significantly to stabilization. These results suggest that L110M modestly enhances conformational order and stability in the TTR peptide assemblies without major structural disruption, deepening our understanding of amyloidogenesis in TTR-related disorders.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of L110M Mutation on the Structure and Stability of ATTR(105-115) Peptide Assembly: A Computational Study.\",\"authors\":\"Prabuddha Bhattacharya, Sumit Mittal\",\"doi\":\"10.1002/prot.70046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanisms driving amyloid assembly have long intrigued structural biologists, as they offer insights into systemic fibrotic changes and the dynamic behavior of transthyretin (TTR) aggregation, crucial for developing amyloid-targeted therapies. In TTR-associated amyloidosis, amyloid fibrils form via destabilization of the tetramer into dimers and monomers. While many TTR mutations have been studied, the atomistic impact of multiple mutations on amyloid transthyretin (ATTR) self-assembly remains underexplored. To the best of our knowledge, this is the first computational analysis reporting the impact of the L110M mutation on ATTR peptide aggregation. Using triplicate 1 μs all-atom molecular dynamics (MD) simulations, totaling 18 μs, the conformational dynamics of cross-β amyloid fibrils in the ATTR(105-115) segment were examined for both wild-type and L110M mutant TTR. The L110M mutation consistently enhanced the β-sheet content in all oligomers, with increases of ~1%, ~5%, and ~4% over the wild-type in the 2-, 4-, and 8-peptide systems, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations revealed higher effective binding free energy for the L110M mutant, with residue M110 contributing significantly to stabilization. These results suggest that L110M modestly enhances conformational order and stability in the TTR peptide assemblies without major structural disruption, deepening our understanding of amyloidogenesis in TTR-related disorders.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70046\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70046","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

驱动淀粉样蛋白组装的机制长期以来一直引起结构生物学家的兴趣,因为它们提供了对系统性纤维化变化和转甲状腺素(TTR)聚集的动态行为的见解,这对于开发淀粉样蛋白靶向治疗至关重要。在trr相关的淀粉样变性中,淀粉样原纤维通过四聚体变成二聚体和单体的不稳定而形成。虽然已经研究了许多TTR突变,但多个突变对淀粉样蛋白转甲状腺素(ATTR)自组装的原子影响仍未得到充分探讨。据我们所知,这是第一个报道L110M突变对ATTR肽聚集影响的计算分析。采用3个1 μs全原子分子动力学(MD)模拟,共18 μs,研究了野生型和L110M突变型TTR的ATTR(105-115)段交叉β淀粉样蛋白原纤维的构象动力学。L110M突变持续提高了所有寡聚物中β-sheet的含量,在2-、4-和8-肽体系中分别比野生型增加了~1%、~5%和~4%。分子力学泊松-玻尔兹曼表面积(MM-PBSA)计算表明,L110M突变体的有效结合自由能更高,残基M110对稳定有显著贡献。这些结果表明,L110M适度地增强了TTR肽组合的构象秩序和稳定性,而没有发生重大的结构破坏,加深了我们对TTR相关疾病淀粉样变性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of L110M Mutation on the Structure and Stability of ATTR(105-115) Peptide Assembly: A Computational Study.

The mechanisms driving amyloid assembly have long intrigued structural biologists, as they offer insights into systemic fibrotic changes and the dynamic behavior of transthyretin (TTR) aggregation, crucial for developing amyloid-targeted therapies. In TTR-associated amyloidosis, amyloid fibrils form via destabilization of the tetramer into dimers and monomers. While many TTR mutations have been studied, the atomistic impact of multiple mutations on amyloid transthyretin (ATTR) self-assembly remains underexplored. To the best of our knowledge, this is the first computational analysis reporting the impact of the L110M mutation on ATTR peptide aggregation. Using triplicate 1 μs all-atom molecular dynamics (MD) simulations, totaling 18 μs, the conformational dynamics of cross-β amyloid fibrils in the ATTR(105-115) segment were examined for both wild-type and L110M mutant TTR. The L110M mutation consistently enhanced the β-sheet content in all oligomers, with increases of ~1%, ~5%, and ~4% over the wild-type in the 2-, 4-, and 8-peptide systems, respectively. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations revealed higher effective binding free energy for the L110M mutant, with residue M110 contributing significantly to stabilization. These results suggest that L110M modestly enhances conformational order and stability in the TTR peptide assemblies without major structural disruption, deepening our understanding of amyloidogenesis in TTR-related disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信