使用深度学习方法的图像处理和计算机断层扫描图像分析综述。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Darcie Anderson, Prabhakar Ramachandran, Jamie Trapp, Andrew Fielding
{"title":"使用深度学习方法的图像处理和计算机断层扫描图像分析综述。","authors":"Darcie Anderson, Prabhakar Ramachandran, Jamie Trapp, Andrew Fielding","doi":"10.1007/s13246-025-01635-w","DOIUrl":null,"url":null,"abstract":"<p><p>The use of machine learning has seen extraordinary growth since the development of deep learning techniques, notably the deep artificial neural network. Deep learning methodology excels in addressing complicated problems such as image classification, object detection, and natural language processing. A key feature of these networks is the capability to extract useful patterns from vast quantities of complex data, including images. As many branches of healthcare revolves around the generation, processing, and analysis of images, these techniques have become increasingly commonplace. This is especially true for radiotherapy, which relies on the use of anatomical and functional images from a range of imaging modalities, such as Computed Tomography (CT). The aim of this review is to provide an understanding of deep learning methodologies, including neural network types and structure, as well as linking these general concepts to medical CT image processing for radiotherapy. Specifically, it focusses on the stages of enhancement and analysis, incorporating image denoising, super-resolution, generation, registration, and segmentation, supported by examples of recent literature.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of image processing and analysis of computed tomography images using deep learning methods.\",\"authors\":\"Darcie Anderson, Prabhakar Ramachandran, Jamie Trapp, Andrew Fielding\",\"doi\":\"10.1007/s13246-025-01635-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of machine learning has seen extraordinary growth since the development of deep learning techniques, notably the deep artificial neural network. Deep learning methodology excels in addressing complicated problems such as image classification, object detection, and natural language processing. A key feature of these networks is the capability to extract useful patterns from vast quantities of complex data, including images. As many branches of healthcare revolves around the generation, processing, and analysis of images, these techniques have become increasingly commonplace. This is especially true for radiotherapy, which relies on the use of anatomical and functional images from a range of imaging modalities, such as Computed Tomography (CT). The aim of this review is to provide an understanding of deep learning methodologies, including neural network types and structure, as well as linking these general concepts to medical CT image processing for radiotherapy. Specifically, it focusses on the stages of enhancement and analysis, incorporating image denoising, super-resolution, generation, registration, and segmentation, supported by examples of recent literature.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01635-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01635-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

自从深度学习技术,特别是深度人工神经网络的发展以来,机器学习的使用已经有了惊人的增长。深度学习方法擅长解决复杂的问题,如图像分类、目标检测和自然语言处理。这些网络的一个关键特征是从包括图像在内的大量复杂数据中提取有用模式的能力。由于医疗保健的许多分支都围绕图像的生成、处理和分析展开,这些技术变得越来越普遍。放射治疗尤其如此,它依赖于使用来自一系列成像方式的解剖和功能图像,例如计算机断层扫描(CT)。这篇综述的目的是提供对深度学习方法的理解,包括神经网络的类型和结构,以及将这些一般概念与放射治疗的医学CT图像处理联系起来。具体来说,它侧重于增强和分析的阶段,包括图像去噪、超分辨率、生成、配准和分割,并以最近的文献为例提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of image processing and analysis of computed tomography images using deep learning methods.

The use of machine learning has seen extraordinary growth since the development of deep learning techniques, notably the deep artificial neural network. Deep learning methodology excels in addressing complicated problems such as image classification, object detection, and natural language processing. A key feature of these networks is the capability to extract useful patterns from vast quantities of complex data, including images. As many branches of healthcare revolves around the generation, processing, and analysis of images, these techniques have become increasingly commonplace. This is especially true for radiotherapy, which relies on the use of anatomical and functional images from a range of imaging modalities, such as Computed Tomography (CT). The aim of this review is to provide an understanding of deep learning methodologies, including neural network types and structure, as well as linking these general concepts to medical CT image processing for radiotherapy. Specifically, it focusses on the stages of enhancement and analysis, incorporating image denoising, super-resolution, generation, registration, and segmentation, supported by examples of recent literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信