非线性偏微分方程与极大正则性的扩展研究。

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Antonio Agresti, Mark Veraar
{"title":"非线性偏微分方程与极大正则性的扩展研究。","authors":"Antonio Agresti, Mark Veraar","doi":"10.1007/s00030-025-01090-2","DOIUrl":null,"url":null,"abstract":"<p><p>In this survey, we provide an in-depth exposition of our recent results on the well-posedness theory for stochastic evolution equations, employing maximal regularity techniques. The core of our approach is an abstract notion of critical spaces, which, when applied to nonlinear SPDEs, coincides with the concept of scaling-invariant spaces. This framework leads to several sharp blow-up criteria and enables one to obtain instantaneous regularization results. Additionally, we refine and unify our previous results, while also presenting several new contributions. In the second part of the survey, we apply the abstract results to several concrete SPDEs. In particular, we give applications to stochastic perturbations of quasi-geostrophic equations, Navier-Stokes equations, and reaction-diffusion systems (including Allen-Cahn, Cahn-Hilliard and Lotka-Volterra models). Moreover, for the Navier-Stokes equations, we establish new Serrin-type blow-up criteria. While some applications are addressed using <math><msup><mi>L</mi> <mn>2</mn></msup> </math> -theory, many require a more general <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <msup><mi>L</mi> <mi>q</mi></msup> <mo>)</mo></mrow> </mrow> </math> -framework. In the final section, we outline several open problems, covering both abstract aspects of stochastic evolution equations, and concrete questions in the study of linear and nonlinear SPDEs.</p>","PeriodicalId":49747,"journal":{"name":"Nodea-Nonlinear Differential Equations and Applications","volume":"32 6","pages":"123"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402051/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonlinear SPDEs and Maximal Regularity: An Extended Survey.\",\"authors\":\"Antonio Agresti, Mark Veraar\",\"doi\":\"10.1007/s00030-025-01090-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this survey, we provide an in-depth exposition of our recent results on the well-posedness theory for stochastic evolution equations, employing maximal regularity techniques. The core of our approach is an abstract notion of critical spaces, which, when applied to nonlinear SPDEs, coincides with the concept of scaling-invariant spaces. This framework leads to several sharp blow-up criteria and enables one to obtain instantaneous regularization results. Additionally, we refine and unify our previous results, while also presenting several new contributions. In the second part of the survey, we apply the abstract results to several concrete SPDEs. In particular, we give applications to stochastic perturbations of quasi-geostrophic equations, Navier-Stokes equations, and reaction-diffusion systems (including Allen-Cahn, Cahn-Hilliard and Lotka-Volterra models). Moreover, for the Navier-Stokes equations, we establish new Serrin-type blow-up criteria. While some applications are addressed using <math><msup><mi>L</mi> <mn>2</mn></msup> </math> -theory, many require a more general <math> <mrow><msup><mi>L</mi> <mi>p</mi></msup> <mrow><mo>(</mo> <msup><mi>L</mi> <mi>q</mi></msup> <mo>)</mo></mrow> </mrow> </math> -framework. In the final section, we outline several open problems, covering both abstract aspects of stochastic evolution equations, and concrete questions in the study of linear and nonlinear SPDEs.</p>\",\"PeriodicalId\":49747,\"journal\":{\"name\":\"Nodea-Nonlinear Differential Equations and Applications\",\"volume\":\"32 6\",\"pages\":\"123\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nodea-Nonlinear Differential Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-025-01090-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nodea-Nonlinear Differential Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00030-025-01090-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这个调查中,我们提供了一个深入的阐述我们最近的结果在适定性理论随机演化方程,采用最大正则技术。我们的方法的核心是临界空间的抽象概念,当应用于非线性spde时,它与比例不变空间的概念一致。这个框架导致了几个尖锐的爆炸准则,并使人们能够获得即时的正则化结果。此外,我们改进和统一了以前的结果,同时也提出了一些新的贡献。在调查的第二部分,我们将抽象的结果应用到几个具体的spde中。特别地,我们给出了准地转方程,Navier-Stokes方程和反应-扩散系统(包括Allen-Cahn, Cahn-Hilliard和Lotka-Volterra模型)的随机摄动的应用。此外,对于Navier-Stokes方程,我们建立了新的serrin型爆破判据。虽然一些应用程序是使用l2理论解决的,但许多应用程序需要更一般的lpl (lq)框架。在最后一节,我们概述了几个开放的问题,涵盖了随机演化方程的抽象方面,以及线性和非线性spde研究中的具体问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlinear SPDEs and Maximal Regularity: An Extended Survey.

Nonlinear SPDEs and Maximal Regularity: An Extended Survey.

In this survey, we provide an in-depth exposition of our recent results on the well-posedness theory for stochastic evolution equations, employing maximal regularity techniques. The core of our approach is an abstract notion of critical spaces, which, when applied to nonlinear SPDEs, coincides with the concept of scaling-invariant spaces. This framework leads to several sharp blow-up criteria and enables one to obtain instantaneous regularization results. Additionally, we refine and unify our previous results, while also presenting several new contributions. In the second part of the survey, we apply the abstract results to several concrete SPDEs. In particular, we give applications to stochastic perturbations of quasi-geostrophic equations, Navier-Stokes equations, and reaction-diffusion systems (including Allen-Cahn, Cahn-Hilliard and Lotka-Volterra models). Moreover, for the Navier-Stokes equations, we establish new Serrin-type blow-up criteria. While some applications are addressed using L 2 -theory, many require a more general L p ( L q ) -framework. In the final section, we outline several open problems, covering both abstract aspects of stochastic evolution equations, and concrete questions in the study of linear and nonlinear SPDEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
75
审稿时长
>12 weeks
期刊介绍: Nonlinear Differential Equations and Applications (NoDEA) provides a forum for research contributions on nonlinear differential equations motivated by application to applied sciences. The research areas of interest for NoDEA include, but are not limited to: deterministic and stochastic ordinary and partial differential equations, finite and infinite-dimensional dynamical systems, qualitative analysis of solutions, variational, topological and viscosity methods, mathematical control theory, complex dynamics and pattern formation, approximation and numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信