{"title":"基于深度学习的模型,用于检测泰国南部脑顺应性差的颅内波形。","authors":"Thara Tunthanathip, Avika Trakulpanitkit","doi":"10.4266/acc.001425","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intracranial pressure (ICP) waveform analysis provides critical insights into brain compliance and can aid in the early detection of neurological deterioration. Deep learning (DL) has recently emerged as an effective approach for analyzing complex medical signals and imaging data. The aim of the present research was to develop a DL-based model for detecting ICP waveforms indicative of poor brain compliance.</p><p><strong>Methods: </strong>A retrospective cohort study was conducted using ICP wave images collected from postoperative hydrocephalus (HCP) patients who underwent ventriculostomy. The images were categorized into normal and poor compliance waveforms. Precision, recall, mean average precision at the 0.5 intersection over union (mAP_0.5), and the area under the receiver operating characteristic curve (AUC) were used to test.</p><p><strong>Results: </strong>The dataset consisted of 2,744 ICP wave images from 21 HCP patients. The best-performing model achieved a precision of 0.97, a recall of 0.96, and a mAP_0.5 of 0.989. The confusion matrix for poor brain compliance waveform detection using the test dataset also demonstrated a high classification accuracy, with true positive and true negative rates of 48.5% and 47.8%, respectively. Additionally, the model demonstrated high accuracy, achieving a mAP_0.5 of 0.994, sensitivity of 0.956, specificity of 0.970, and an AUC of 0.96 in the detection of poor compliance waveforms.</p><p><strong>Conclusions: </strong>The DL-based model successfully detected pathological ICP waveforms, thereby enhancing clinical decision-making. As DL advances, its significance in neurocritical care will help to pave the way for more individualized and data-driven approaches to brain monitoring and management.</p>","PeriodicalId":44118,"journal":{"name":"Acute and Critical Care","volume":"40 3","pages":"473-481"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based model for detection of intracranial waveforms with poor brain compliance in southern Thailand.\",\"authors\":\"Thara Tunthanathip, Avika Trakulpanitkit\",\"doi\":\"10.4266/acc.001425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Intracranial pressure (ICP) waveform analysis provides critical insights into brain compliance and can aid in the early detection of neurological deterioration. Deep learning (DL) has recently emerged as an effective approach for analyzing complex medical signals and imaging data. The aim of the present research was to develop a DL-based model for detecting ICP waveforms indicative of poor brain compliance.</p><p><strong>Methods: </strong>A retrospective cohort study was conducted using ICP wave images collected from postoperative hydrocephalus (HCP) patients who underwent ventriculostomy. The images were categorized into normal and poor compliance waveforms. Precision, recall, mean average precision at the 0.5 intersection over union (mAP_0.5), and the area under the receiver operating characteristic curve (AUC) were used to test.</p><p><strong>Results: </strong>The dataset consisted of 2,744 ICP wave images from 21 HCP patients. The best-performing model achieved a precision of 0.97, a recall of 0.96, and a mAP_0.5 of 0.989. The confusion matrix for poor brain compliance waveform detection using the test dataset also demonstrated a high classification accuracy, with true positive and true negative rates of 48.5% and 47.8%, respectively. Additionally, the model demonstrated high accuracy, achieving a mAP_0.5 of 0.994, sensitivity of 0.956, specificity of 0.970, and an AUC of 0.96 in the detection of poor compliance waveforms.</p><p><strong>Conclusions: </strong>The DL-based model successfully detected pathological ICP waveforms, thereby enhancing clinical decision-making. As DL advances, its significance in neurocritical care will help to pave the way for more individualized and data-driven approaches to brain monitoring and management.</p>\",\"PeriodicalId\":44118,\"journal\":{\"name\":\"Acute and Critical Care\",\"volume\":\"40 3\",\"pages\":\"473-481\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acute and Critical Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4266/acc.001425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acute and Critical Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4266/acc.001425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Deep learning-based model for detection of intracranial waveforms with poor brain compliance in southern Thailand.
Background: Intracranial pressure (ICP) waveform analysis provides critical insights into brain compliance and can aid in the early detection of neurological deterioration. Deep learning (DL) has recently emerged as an effective approach for analyzing complex medical signals and imaging data. The aim of the present research was to develop a DL-based model for detecting ICP waveforms indicative of poor brain compliance.
Methods: A retrospective cohort study was conducted using ICP wave images collected from postoperative hydrocephalus (HCP) patients who underwent ventriculostomy. The images were categorized into normal and poor compliance waveforms. Precision, recall, mean average precision at the 0.5 intersection over union (mAP_0.5), and the area under the receiver operating characteristic curve (AUC) were used to test.
Results: The dataset consisted of 2,744 ICP wave images from 21 HCP patients. The best-performing model achieved a precision of 0.97, a recall of 0.96, and a mAP_0.5 of 0.989. The confusion matrix for poor brain compliance waveform detection using the test dataset also demonstrated a high classification accuracy, with true positive and true negative rates of 48.5% and 47.8%, respectively. Additionally, the model demonstrated high accuracy, achieving a mAP_0.5 of 0.994, sensitivity of 0.956, specificity of 0.970, and an AUC of 0.96 in the detection of poor compliance waveforms.
Conclusions: The DL-based model successfully detected pathological ICP waveforms, thereby enhancing clinical decision-making. As DL advances, its significance in neurocritical care will help to pave the way for more individualized and data-driven approaches to brain monitoring and management.