{"title":"利用计算方法揭示Abemaciclib的DYRK激酶家族亚型选择性机制的生物物理基础。","authors":"K D Ursal, P Kar","doi":"10.1080/1062936X.2025.2552133","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) play crucial roles in regulating cell growth and brain development. Dysregulation of these kinases is linked to disorders like Down syndrome and cancers. The selective inhibition of DYRK1A over other isoforms remains a significant challenge due to their high structural similarity. This study investigates the selectivity of Abemaciclib, an FDA-approved CDK4/6 inhibitor known to target DYRK1A, against other DYRK family isoforms. We employed molecular docking and molecular dynamics simulations, coupled with the Molecular Mechanics Poisson-Boltzmann Surface Area method, to evaluate the selectivity profile of Abemaciclib. Results showed that it binds strongest to DYRK1B, followed by DYRK1A, DYRK4, DYRK3 and DYRK2, which is validated with the statistical analysis. Enhanced selectivity for DYRK1B arises from stronger van der Waals and electrostatic interactions. Hydrophobic contacts and hydrogen bonds, especially within the kinase's hinge region, help stabilize the complex. Notably, Leu241 in DYRK1A and its identical residues in other isoforms play a pivotal role in these stabilizing interactions. Key residue differences, like Phe170, Glu239 and His285 in DYRK1A, contribute to specific interactions that underpin the molecular binding pattern. By identifying conserved and isoform-specific interactions, our study provides valuable insights for the rational design of potent and selective DYRK inhibitors.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":"36 7","pages":"651-671"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the biophysical basis of DYRK kinase family isoform selectivity mechanism of Abemaciclib using computational approaches.\",\"authors\":\"K D Ursal, P Kar\",\"doi\":\"10.1080/1062936X.2025.2552133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) play crucial roles in regulating cell growth and brain development. Dysregulation of these kinases is linked to disorders like Down syndrome and cancers. The selective inhibition of DYRK1A over other isoforms remains a significant challenge due to their high structural similarity. This study investigates the selectivity of Abemaciclib, an FDA-approved CDK4/6 inhibitor known to target DYRK1A, against other DYRK family isoforms. We employed molecular docking and molecular dynamics simulations, coupled with the Molecular Mechanics Poisson-Boltzmann Surface Area method, to evaluate the selectivity profile of Abemaciclib. Results showed that it binds strongest to DYRK1B, followed by DYRK1A, DYRK4, DYRK3 and DYRK2, which is validated with the statistical analysis. Enhanced selectivity for DYRK1B arises from stronger van der Waals and electrostatic interactions. Hydrophobic contacts and hydrogen bonds, especially within the kinase's hinge region, help stabilize the complex. Notably, Leu241 in DYRK1A and its identical residues in other isoforms play a pivotal role in these stabilizing interactions. Key residue differences, like Phe170, Glu239 and His285 in DYRK1A, contribute to specific interactions that underpin the molecular binding pattern. By identifying conserved and isoform-specific interactions, our study provides valuable insights for the rational design of potent and selective DYRK inhibitors.</p>\",\"PeriodicalId\":21446,\"journal\":{\"name\":\"SAR and QSAR in Environmental Research\",\"volume\":\"36 7\",\"pages\":\"651-671\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAR and QSAR in Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/1062936X.2025.2552133\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2025.2552133","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the biophysical basis of DYRK kinase family isoform selectivity mechanism of Abemaciclib using computational approaches.
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) play crucial roles in regulating cell growth and brain development. Dysregulation of these kinases is linked to disorders like Down syndrome and cancers. The selective inhibition of DYRK1A over other isoforms remains a significant challenge due to their high structural similarity. This study investigates the selectivity of Abemaciclib, an FDA-approved CDK4/6 inhibitor known to target DYRK1A, against other DYRK family isoforms. We employed molecular docking and molecular dynamics simulations, coupled with the Molecular Mechanics Poisson-Boltzmann Surface Area method, to evaluate the selectivity profile of Abemaciclib. Results showed that it binds strongest to DYRK1B, followed by DYRK1A, DYRK4, DYRK3 and DYRK2, which is validated with the statistical analysis. Enhanced selectivity for DYRK1B arises from stronger van der Waals and electrostatic interactions. Hydrophobic contacts and hydrogen bonds, especially within the kinase's hinge region, help stabilize the complex. Notably, Leu241 in DYRK1A and its identical residues in other isoforms play a pivotal role in these stabilizing interactions. Key residue differences, like Phe170, Glu239 and His285 in DYRK1A, contribute to specific interactions that underpin the molecular binding pattern. By identifying conserved and isoform-specific interactions, our study provides valuable insights for the rational design of potent and selective DYRK inhibitors.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.