弥合α治疗剂量学的分辨率差距:定量MRI的空间?

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Joshua K Marchant, Bruce R Rosen
{"title":"弥合α治疗剂量学的分辨率差距:定量MRI的空间?","authors":"Joshua K Marchant, Bruce R Rosen","doi":"10.1088/1361-6560/ae02dd","DOIUrl":null,"url":null,"abstract":"<p><p>While external beam radiotherapy relies heavily on pre-treatment imaging for advanced treatment planning and radiation dosimetry, tools for predicting local dose delivery in systemic radiopharmaceutical therapies have generally lagged behind. Furthermore, targeted alpha particle-emitting radiopharmaceuticals, with their uniquely short range and high-energy dose deposition, require specialized dosimetry methods at the micro- and mesoscale. Magnetic resonance imaging methods may represent the missing link between standard diagnostic tumor imaging and personalized radionuclide treatment planning for patients. For example, dynamic susceptibility contrast magnetic resonance imaging reveals markedly heterogeneous tumor perfusion patterns and vascular permeability from patient to patient, suggesting variable local drug delivery, but this information is only used in rudimentary ways or not at all in treatment planning. Similarly, emerging diffusion magnetic resonance imaging (MRI) methods may provide information relevant to microscale dosimetry, such as local cell size and density. In this review, we explore advancements in MRI and computational modeling strategies that could improve our fundamental understanding of radionuclide transport in solid tumors and enable pre-treatment, patient-specific predictions of dose delivery at a biologically relevant length scale.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the resolution gap in alpha therapy dosimetry: a space for quantitative MRI?\",\"authors\":\"Joshua K Marchant, Bruce R Rosen\",\"doi\":\"10.1088/1361-6560/ae02dd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While external beam radiotherapy relies heavily on pre-treatment imaging for advanced treatment planning and radiation dosimetry, tools for predicting local dose delivery in systemic radiopharmaceutical therapies have generally lagged behind. Furthermore, targeted alpha particle-emitting radiopharmaceuticals, with their uniquely short range and high-energy dose deposition, require specialized dosimetry methods at the micro- and mesoscale. Magnetic resonance imaging methods may represent the missing link between standard diagnostic tumor imaging and personalized radionuclide treatment planning for patients. For example, dynamic susceptibility contrast magnetic resonance imaging reveals markedly heterogeneous tumor perfusion patterns and vascular permeability from patient to patient, suggesting variable local drug delivery, but this information is only used in rudimentary ways or not at all in treatment planning. Similarly, emerging diffusion magnetic resonance imaging (MRI) methods may provide information relevant to microscale dosimetry, such as local cell size and density. In this review, we explore advancements in MRI and computational modeling strategies that could improve our fundamental understanding of radionuclide transport in solid tumors and enable pre-treatment, patient-specific predictions of dose delivery at a biologically relevant length scale.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ae02dd\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ae02dd","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然外部放射治疗严重依赖于治疗前成像来进行高级治疗计划和放射剂量测定,但在全身放射药物治疗中预测局部剂量传递的工具通常落后。此外,靶向α粒子放射药物具有独特的短程和高能剂量沉积,需要在微观和中尺度上专门的剂量测定方法。磁共振成像方法可能代表了标准诊断肿瘤成像和患者个性化放射性核素治疗计划之间缺失的环节。例如,动态敏感性对比磁共振成像显示不同患者的肿瘤灌注模式和血管通透性明显不同,提示局部药物递送存在差异,但这些信息仅用于基本方法或根本不用于治疗计划。同样,新兴的扩散MRI方法可以提供与微尺度剂量学相关的信息,如局部细胞大小和密度。在这篇综述中,我们探讨了MRI和计算建模策略的进展,这些策略可以提高我们对实体肿瘤中放射性核素转运的基本理解,并能够在生物学相关的长度尺度上进行治疗前、患者特异性剂量传递的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging the resolution gap in alpha therapy dosimetry: a space for quantitative MRI?

While external beam radiotherapy relies heavily on pre-treatment imaging for advanced treatment planning and radiation dosimetry, tools for predicting local dose delivery in systemic radiopharmaceutical therapies have generally lagged behind. Furthermore, targeted alpha particle-emitting radiopharmaceuticals, with their uniquely short range and high-energy dose deposition, require specialized dosimetry methods at the micro- and mesoscale. Magnetic resonance imaging methods may represent the missing link between standard diagnostic tumor imaging and personalized radionuclide treatment planning for patients. For example, dynamic susceptibility contrast magnetic resonance imaging reveals markedly heterogeneous tumor perfusion patterns and vascular permeability from patient to patient, suggesting variable local drug delivery, but this information is only used in rudimentary ways or not at all in treatment planning. Similarly, emerging diffusion magnetic resonance imaging (MRI) methods may provide information relevant to microscale dosimetry, such as local cell size and density. In this review, we explore advancements in MRI and computational modeling strategies that could improve our fundamental understanding of radionuclide transport in solid tumors and enable pre-treatment, patient-specific predictions of dose delivery at a biologically relevant length scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信