基于储层计算的动态系统自适应控制。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0291585
Swarnendu Mandal, Swati Chauhan, Umesh Kumar Verma, Manish Dev Shrimali, Kazuyuki Aihara
{"title":"基于储层计算的动态系统自适应控制。","authors":"Swarnendu Mandal, Swati Chauhan, Umesh Kumar Verma, Manish Dev Shrimali, Kazuyuki Aihara","doi":"10.1063/5.0291585","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate a data-driven technique for adaptive control of dynamical systems that exploits the reservoir computing method. We show that a reservoir computer can be trained to predict a system parameter from the time series. Subsequently, a control signal based on the predicted parameter can be used as a feedback to the dynamical system to lead it to a target state. Our results show that the dynamical system can be controlled throughout a wide range of attractor types. One set of training data consisting of only a few time series corresponding to the known parameter values enables our scheme to control a dynamical system to an arbitrary target attractor starting from any other initial attractor. In addition to numerical results, we implement our scheme in real-world systems, such as a Rössler system, realized in an electronic circuit to demonstrate the effectiveness of our approach.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive control of dynamical systems using reservoir computing.\",\"authors\":\"Swarnendu Mandal, Swati Chauhan, Umesh Kumar Verma, Manish Dev Shrimali, Kazuyuki Aihara\",\"doi\":\"10.1063/5.0291585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate a data-driven technique for adaptive control of dynamical systems that exploits the reservoir computing method. We show that a reservoir computer can be trained to predict a system parameter from the time series. Subsequently, a control signal based on the predicted parameter can be used as a feedback to the dynamical system to lead it to a target state. Our results show that the dynamical system can be controlled throughout a wide range of attractor types. One set of training data consisting of only a few time series corresponding to the known parameter values enables our scheme to control a dynamical system to an arbitrary target attractor starting from any other initial attractor. In addition to numerical results, we implement our scheme in real-world systems, such as a Rössler system, realized in an electronic circuit to demonstrate the effectiveness of our approach.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 9\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0291585\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0291585","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种利用油藏计算方法的数据驱动技术,用于动态系统的自适应控制。我们证明了水库计算机可以通过训练从时间序列中预测系统参数。然后,基于预测参数的控制信号可以作为动力系统的反馈,使其达到目标状态。我们的结果表明,动力系统可以在广泛的吸引子类型范围内进行控制。一组训练数据仅由与已知参数值相对应的几个时间序列组成,使我们的方案能够从任何其他初始吸引子开始控制动态系统到任意目标吸引子。除了数值结果外,我们还在实际系统中实现了我们的方案,例如在电子电路中实现的Rössler系统,以证明我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control of dynamical systems using reservoir computing.

We demonstrate a data-driven technique for adaptive control of dynamical systems that exploits the reservoir computing method. We show that a reservoir computer can be trained to predict a system parameter from the time series. Subsequently, a control signal based on the predicted parameter can be used as a feedback to the dynamical system to lead it to a target state. Our results show that the dynamical system can be controlled throughout a wide range of attractor types. One set of training data consisting of only a few time series corresponding to the known parameter values enables our scheme to control a dynamical system to an arbitrary target attractor starting from any other initial attractor. In addition to numerical results, we implement our scheme in real-world systems, such as a Rössler system, realized in an electronic circuit to demonstrate the effectiveness of our approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信