非易失性存储器件电阻开关用金属卟啉端部超支化聚酰亚胺。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Panpan Zheng, Yiran Xu, Long Li, Yang Shen, Tingting Yang, Ying Song, Xijia Yang
{"title":"非易失性存储器件电阻开关用金属卟啉端部超支化聚酰亚胺。","authors":"Panpan Zheng, Yiran Xu, Long Li, Yang Shen, Tingting Yang, Ying Song, Xijia Yang","doi":"10.1002/cphc.202500320","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer resistive random-access memory (RRAM) holds great promise for flexible wearable electronics and artificial intelligence, yet its development is hindered by chain entanglement and intermolecular interactions, leading to processing challenges, high operating voltages, and unstable switching parameters. Herein, metal-porphyrin-terminated hyperbranched polyimides (ATPP@HBPI, (Zn)ATPP@HBPI, and (Cu)ATPP@HBPI) were synthesized. The hyperbranched structure mitigates intermolecular interactions, while ionic doping modulates conductivity, and the synergistic effect of ions and electrons optimizes resistive switching behavior. Devices based on ATPP@HBPI and (Cu)ATPP@HBPI exhibited nonvolatile write-once-read-many (WORM) characteristics, whereas (Zn)ATPP@HBPI displayed volatile static random-access memory (SRAM) features. The devices demonstrated threshold voltages of -1.88 to -2.60 V and ON/OFF current ratios of 10<sup>4</sup>-10<sup>5</sup>. Mechanistic analysis revealed that nonvolatile switching is dominated by carrier trapping, while the Zn \"bridge\" effect enables volatile behavior via dynamic charge balance. This study provides a new material platform and mechanistic insight for advancing high-density flexible organic memory devices toward practical applications.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500320"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal Porphyrin-Terminated Hyperbranched Polyimides for Resistive Switching in Nonvolatile Memory Devices.\",\"authors\":\"Panpan Zheng, Yiran Xu, Long Li, Yang Shen, Tingting Yang, Ying Song, Xijia Yang\",\"doi\":\"10.1002/cphc.202500320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymer resistive random-access memory (RRAM) holds great promise for flexible wearable electronics and artificial intelligence, yet its development is hindered by chain entanglement and intermolecular interactions, leading to processing challenges, high operating voltages, and unstable switching parameters. Herein, metal-porphyrin-terminated hyperbranched polyimides (ATPP@HBPI, (Zn)ATPP@HBPI, and (Cu)ATPP@HBPI) were synthesized. The hyperbranched structure mitigates intermolecular interactions, while ionic doping modulates conductivity, and the synergistic effect of ions and electrons optimizes resistive switching behavior. Devices based on ATPP@HBPI and (Cu)ATPP@HBPI exhibited nonvolatile write-once-read-many (WORM) characteristics, whereas (Zn)ATPP@HBPI displayed volatile static random-access memory (SRAM) features. The devices demonstrated threshold voltages of -1.88 to -2.60 V and ON/OFF current ratios of 10<sup>4</sup>-10<sup>5</sup>. Mechanistic analysis revealed that nonvolatile switching is dominated by carrier trapping, while the Zn \\\"bridge\\\" effect enables volatile behavior via dynamic charge balance. This study provides a new material platform and mechanistic insight for advancing high-density flexible organic memory devices toward practical applications.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202500320\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202500320\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500320","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物电阻随机存取存储器(RRAM)在柔性可穿戴电子产品和人工智能方面具有很大的前景,但其发展受到链纠缠和分子间相互作用的阻碍,导致加工挑战,高工作电压和不稳定的开关参数。本文合成了端金属卟啉超支化聚酰亚胺(ATPP@HBPI, (Zn)ATPP@HBPI和(Cu)ATPP@HBPI)。超支化结构减轻了分子间的相互作用,而离子掺杂调节了电导率,离子和电子的协同效应优化了电阻开关行为。基于ATPP@HBPI和(Cu)ATPP@HBPI的器件表现出非易失性的write-once-read-many (WORM)特性,而基于(Zn)ATPP@HBPI的器件表现出易失性的静态随机存取存储器(SRAM)特性。该器件的阈值电压为-1.88至-2.60 V,开/关电流比为104-105。机制分析表明,非易失性开关主要由载流子捕获主导,而锌“桥”效应通过动态电荷平衡实现易失性行为。该研究为高密度柔性有机存储器件的实际应用提供了新的材料平台和机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal Porphyrin-Terminated Hyperbranched Polyimides for Resistive Switching in Nonvolatile Memory Devices.

Polymer resistive random-access memory (RRAM) holds great promise for flexible wearable electronics and artificial intelligence, yet its development is hindered by chain entanglement and intermolecular interactions, leading to processing challenges, high operating voltages, and unstable switching parameters. Herein, metal-porphyrin-terminated hyperbranched polyimides (ATPP@HBPI, (Zn)ATPP@HBPI, and (Cu)ATPP@HBPI) were synthesized. The hyperbranched structure mitigates intermolecular interactions, while ionic doping modulates conductivity, and the synergistic effect of ions and electrons optimizes resistive switching behavior. Devices based on ATPP@HBPI and (Cu)ATPP@HBPI exhibited nonvolatile write-once-read-many (WORM) characteristics, whereas (Zn)ATPP@HBPI displayed volatile static random-access memory (SRAM) features. The devices demonstrated threshold voltages of -1.88 to -2.60 V and ON/OFF current ratios of 104-105. Mechanistic analysis revealed that nonvolatile switching is dominated by carrier trapping, while the Zn "bridge" effect enables volatile behavior via dynamic charge balance. This study provides a new material platform and mechanistic insight for advancing high-density flexible organic memory devices toward practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信