通过物理信息机器学习潜力和粒子群优化加速不同Bi-Pt纳米团簇的结构探索。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Raphaël Vangheluwe, Carine Clavaguéra, Minh-Tue Truong, Dominik Domin, Huy Cong Pham, Mihai-Cosmin Marinica, Nguyen-Thi Van-Oanh
{"title":"通过物理信息机器学习潜力和粒子群优化加速不同Bi-Pt纳米团簇的结构探索。","authors":"Raphaël Vangheluwe,&nbsp;Carine Clavaguéra,&nbsp;Minh-Tue Truong,&nbsp;Dominik Domin,&nbsp;Huy Cong Pham,&nbsp;Mihai-Cosmin Marinica,&nbsp;Nguyen-Thi Van-Oanh","doi":"10.1002/cphc.202500268","DOIUrl":null,"url":null,"abstract":"<p>Bimetallic Bi–Pt nanoclusters exhibit diverse structural motifs, including core-shell, Janus, and mixed alloy configurations, due to the unique bonding characteristics between Bi and Pt atoms. Using density functional theory refinements from ChIMES physically machine-learned potential and CALYPSO particle swarm optimization global searches, 34 Bi20-Pt20 nanoclusters are systematically classified. The results reveal that Bi atoms predominantly occupy surface sites, driven by charge transfer effects. Cohesive energy trends alone prove insufficient for structure differentiation, necessitating a data-driven approach employing principal component analysis and K-means clustering. Furthermore, vibrational, electronic, and infrared spectral analyses provide additional insights into structure-property relationships. The findings offer an original framework for the automated classification and analysis of bimetallic nanoclusters, enhancing the understanding of their stability and functional properties.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 19","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202500268","citationCount":"0","resultStr":"{\"title\":\"Accelerating the Structure Exploration of Diverse Bi–Pt Nanoclusters via Physics-Informed Machine Learning Potential and Particle Swarm Optimization\",\"authors\":\"Raphaël Vangheluwe,&nbsp;Carine Clavaguéra,&nbsp;Minh-Tue Truong,&nbsp;Dominik Domin,&nbsp;Huy Cong Pham,&nbsp;Mihai-Cosmin Marinica,&nbsp;Nguyen-Thi Van-Oanh\",\"doi\":\"10.1002/cphc.202500268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bimetallic Bi–Pt nanoclusters exhibit diverse structural motifs, including core-shell, Janus, and mixed alloy configurations, due to the unique bonding characteristics between Bi and Pt atoms. Using density functional theory refinements from ChIMES physically machine-learned potential and CALYPSO particle swarm optimization global searches, 34 Bi20-Pt20 nanoclusters are systematically classified. The results reveal that Bi atoms predominantly occupy surface sites, driven by charge transfer effects. Cohesive energy trends alone prove insufficient for structure differentiation, necessitating a data-driven approach employing principal component analysis and K-means clustering. Furthermore, vibrational, electronic, and infrared spectral analyses provide additional insights into structure-property relationships. The findings offer an original framework for the automated classification and analysis of bimetallic nanoclusters, enhancing the understanding of their stability and functional properties.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cphc.202500268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500268\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500268","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于Bi和Pt原子之间独特的键合特性,双金属Bi-Pt纳米团簇呈现出多种结构基序,包括核-壳、Janus和混合合金构型。利用密度泛函理论改进的ChIMES物理机器学习潜力和CALYPSO粒子群优化全局搜索,对34个Bi20-Pt20纳米团簇进行了系统分类。结果表明,在电荷转移效应的驱动下,铋原子主要占据表面位置。单靠内聚能趋势不足以区分结构,需要采用主成分分析和k均值聚类的数据驱动方法。此外,振动、电子和红外光谱分析为结构-性能关系提供了额外的见解。这些发现为双金属纳米团簇的自动分类和分析提供了一个原始框架,增强了对其稳定性和功能特性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accelerating the Structure Exploration of Diverse Bi–Pt Nanoclusters via Physics-Informed Machine Learning Potential and Particle Swarm Optimization

Accelerating the Structure Exploration of Diverse Bi–Pt Nanoclusters via Physics-Informed Machine Learning Potential and Particle Swarm Optimization

Bimetallic Bi–Pt nanoclusters exhibit diverse structural motifs, including core-shell, Janus, and mixed alloy configurations, due to the unique bonding characteristics between Bi and Pt atoms. Using density functional theory refinements from ChIMES physically machine-learned potential and CALYPSO particle swarm optimization global searches, 34 Bi20-Pt20 nanoclusters are systematically classified. The results reveal that Bi atoms predominantly occupy surface sites, driven by charge transfer effects. Cohesive energy trends alone prove insufficient for structure differentiation, necessitating a data-driven approach employing principal component analysis and K-means clustering. Furthermore, vibrational, electronic, and infrared spectral analyses provide additional insights into structure-property relationships. The findings offer an original framework for the automated classification and analysis of bimetallic nanoclusters, enhancing the understanding of their stability and functional properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信